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il

Abstract

It is a thesis about dynamical systems with some kind of expansiveness. We consider
homeomorphisms and flows on compact metric spaces. The smooth category is considered and
some results are proved for manifolds. Several variations of expansiveness are considered. In
the discrete time case we consider: cw-expansiveness, [N-expansiveness, hyper-expansiveness.
For the case of continuous flows we study: geometric and kinematic expansiveness, positive
expansiveness and robust expansiveness. The results we obtained were or will be published in
[6-10].

Resumen

Esta tesis versa sobre sistemas dindmicos con diversos tipos de expansividad. Consideramos
homeomorfismos y flujos en espacios métricos compactos. También se considera la categoria
diferenciable y algunos resultados se demuestran en variedades. Diferentes variantes de la
expansividad son tomados en cuenta. En tiempo discreto: cw-expansividad, N-expansividad,
hiperexpansividad. En el caso de flujos: expansividad cinemética y geométrica, expansividad
positiva y expansividad robusta. De los resultados obtenidos algunos fueron y otros seran

publicados en las referencias |6-10].
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Chapter 1
Introduction

In this work we will consider several forms of expansivity and different results are proved. Let
us remark some of the results that we have obtained in this Thesis. We characterize hyper-
expansive homeomorphisms. We prove that 2-expansive homeomorphisms on surfaces without
wandering points are expansive. We prove the non-existence of smooth kinematic expansive
suspensions of irrational rotations. We prove that positive expansive flows are supported on a
finite number of perodic orbits.

Let us describe the contents of the Thesis. We start in the next chapter with a panoramic
view of the theory of expansive systems. We review, from our viewpoint, the main results from
1950 until present days. This chapter is the result of several years of bibliographical research.
The purpose is to explain why the idea of expansivity started, how it was developed, which are
the guiding questions and where is it going now.

In Chapter 3 the meaning of expansiveness is investigated by showing several classical and
well known equivalent definitions. One of this equivalences is due to Lewowicz and is related
with Lyapunov functions. We present a new approach to this topic by introducing Whitney’s
size functions for the construction of Lyapunov functions for isolated sets. Since expansivity
and cw-expansivity are related with isolated sets, applications to these systems are given. Other
known variations of expansivity are presented and examples are given. The whole chapter is
seen from the viewpoint of isolated sets, it is my opinion that this simplifies the exposition.

In Chapter 4 we first review known results of expansive and cw-expansive homeomorphisms.
These results are related with Lyapunov stable points, stable sets and topological dimension.
In the second section we study hyper-expansiveness, that is, the expansiveness of the induced
homeomorphism in the space of compact subsets equipped with the Hausdorff metric. We
give a characterization of such systems. In the final section we introduce a new variation of
expansiveness that we call (m, n)-expansiveness. Several basic properties are obtained.

In Chapter 5 we apply Lewowicz’s techniques in the study of expansive surface homeo-

morphisms. We prove that expansiveness is equivalent to cw-expansiveness in the absence of



bi-asymptotic sectors. In the second section we prove that 2-expansiveness implies expansive-
ness if the non-wandering set is the whole surface. An example is given in the third section to
prove that there are 2-expansive surface homeomorphisms that are not expansive.

In Chapter 6 we consider expansive flows from a kinematic and a geometric viewpoint.
Several technical variations are considered with respect to the kind of time-reparametrizations
allowed. The hierarchy of this definitions is studied on compact metric spaces and on compact
surfaces. Kinematic expansiveness of suspensions and surface flows is studied.

In Chapter 7 we consider positive expansive flows. In the kinematic framework we study
basic properties of such flows especially on surfaces. For positive geometric expansive flows we
prove that they consist of a finite number of compact orbits.

In Chapter 8 perturbations of kinematic expansive flows are considered in the C! category.
In the first section we consider conservative vector fields in the annulus. In the second one we
prove that robust kinematic expansiveness is equivalent to robust geometric expansiveness in

the absence of singularities.



Chapter 2
A panoramic view

In this chapter we will review the development of the theory of expansive systems.

2.1 Unstable dynamics

In this section we present the first results, the main questions and the main variations of the

definition of expansive system.

2.1.1 Unstable homeomorphisms.

The study of expansive homeomorphisms started in 1950 when W. R. Utz [128| defined these
systems with the name of unstable homeomorphisms. In this first article some general properties
were proved related with asymptotic trajectories, the cardinality of the set of periodic points
and the powers of expansive homeomorphisms.

In Utz’s paper the examples on compact spaces were subdynamics of shift maps defined
on Cantor sets. It seems to be the case that Utz’s motivation for the definition of expansive
homeomorphism was to generalize this kind of systems. In the references of the paper one
finds a book on general topology by W. Sierpinski and four works on symbolic dynamics by the
authors M. Garcia, W. H. Gottschalk, G. A. Hedlund and M. Morse that dates from 1938 to
1948. See [37,38,48,49|. These papers can be considered as part of the foundation of abstract
symbolic dynamics.

In order to illustrate the kind of problems studied in topological dynamics before Utz’s
paper, let us recall a question raised by Birkhoff [15] in 1936: given a minimal set and two
points in the set, does there exist an orbit preserving homeomorphism of the minimal set
onto itself transforming one of these points into the other? In [49] Hedlund gave a negative
answer. He considered a Sturmian minimal subshift with two asymptotic points. Therefore we

have that Utz’s result on the existence of asymptotic orbits of expansive homeomorphisms is a
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generalization of Hedlund’s result.
We can say that the theory of expansive homeomorphisms started based on symbolic dy-
namics but it quickly developed by itself. One of the main questions of the theory was present

since the beginning:
What compact metric spaces can carry an expansive homeomorphism?

In 1954 B. Bryant [21]| proved that the interval does not admit such systems and raised another

natural question:
Are there expansive homeomorphisms on connected spaces?

In his note of 1955, R. F. Williams [137] proved that the two-solenoid is expansive. This was the
first continuum shown to admit an expansive dynamic. In 1960 J. F. Jakobsen and W. R. Utz
[57] proved that the compact 2-dimensional disc does not admit expansive homeomorphisms;
in fact they showed that the circle does not admit such dynamics. In this way it was proved
that no compact one-dimensional manifold can carry an expansive homeomorphism. In 1962
B. Bryant [22]| discovered the property of uniform expansiveness that would be very useful in
future works. Other general properties were proved in this and other articles and a new question

gained in interest:
May a locally connected space admit an expansive homeomorphism?

The only known examples at this time were the shift map and the two-solenoid. These examples
are supported on non-locally connected spaces. No manifold was known to admit an expansive
homeomorphism.

The theory will grow with more examples, specially from the hyperbolic dynamics. But it
will be also expanded from another viewpoint, several variations of the definition will follow

the development through the years. Let us in the next section review this topic.

2.1.2 Some variations of expansiveness.

The definition of expansiveness has shown to have a robust interest. That is, small variations
on the definition are also interesting. The first of such variations appeared in 1952 when S.
Schwartzman [118] considered what now is called positive expansiveness. His definition requires
that different points are separated in positive time. He proved that the only compact metric
spaces admitting such homeomorphisms are finite sets.

In 1970 W. L. Reddy [107] introduced point-wise expansiveness, a variation that does not
require the existence of a uniform expansive constant but each point has a positive one. He
proved that even on a compact space, point-wise expansiveness does not imply expansiveness.

In spite of this he generalized results for this weaker definition.
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Another generalization of expansiveness was introduced in 1972 [18] by R. Bowen called
entropy-expansiveness or h-expansiveness. The definition requires that if a set has small diam-
eter for all the time then it has vanishing entropy. Some results concerning the entropy of an
expansive homeomorphism were developed in this paper.

W. Bauer and K. Sigmund in 1975 [13] considered the relationship between a homeomor-
phism on a compact metric space and its induced action on the space of probability measures
and the space of compact subsets called hyperspace. They proved that the induced homeomor-
phism on the probabilities is expansive if and only if the original space is finite. For the action on
the hyperspace they gave some examples proving that the expansiveness of the homeomorphism
does not imply the expansiveness of the induced homeomorphism.

In 1993 [61] H. Kato defined continuum-wise expansiveness by requiring that if a continuum
has small diameter for all the time then it is a singleton. This definition seems to be based on
the techniques developed for expansive homeomorphisms, it was designed in order to be able
of extending important results.

In 2011 C. A. Morales [85] considered measure-expansiveness by requiring that the proba-
bility of two orbits remain close each other for all time is zero. He extended results of expansive
systems on compact metric spaces to the measure-expansive context. In 2012 the same au-
thor [87] defined another variation called N-ezpansiveness. Now a set of points whose orbits
are close for all the time has cardinality smaller than N. There, some results of expansive

homeomorphisms are generalized to this context.

2.2 Hyperbolic systems

2.2.1 Fundamental examples.

The existence of expansive homeomorphisms on continua was first proved by W. L. Reddy
[106]. In 1965 he showed that the torus of dimension greater than one admits expansive home-
omorphisms.

In 1967 a fundamental paper in dynamical systems of D. V. Anosov [1] appeared. A gen-
eralization of the geodesic flow of a compact manifold of negative curvature was developed in
this work. This generalization is now called as Anosov systems. They are characterized by a
uniform hyperbolicity of the tangent map on the whole ambient manifold. He used the property
of expansiveness to show that such systems are structurally stable.

At the same year another fundamental paper in dynamical systems was published. In
[121] S. Smale developed the theory of hyperbolicity of invariant sets of diffeomorphisms and
introduced the definition of Aziom A diffeomorphisms. Expansiveness has shown to be a very

important property of such sets.
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In 1970 T. O’Brien and W. L. Reddy [94] showed that the surfaces of positive genus admit ex-
pansive homeomorphisms. These examples are now known as pseudo-Anosov diffeomorphisms.
With all these examples (Anosov systems, hyperbolic sets and pseudo-Anosov diffeomorphisms)
the theory of expansive systems was highly enriched. Of course the theory of dynamical systems

too.

2.2.2 Expansive flows.

A fundamental work for the theory of expansive flows, written by R. Bowen and P. Walters,
appeared in 1972 [17]. In this paper they made a careful analysis of the definition in the context
of continuous flows on compact metric spaces, and gave extensions of results known for Anosov
systems, mainly related with the topological entropy. As we said, the expansiveness of flows
was first considered by Anosov, and therefore it is natural that such flows have no singular
(i.e. equilibrium) points because the motivation of Anosov was the study of geodesic flows that
usually are restricted to the unit tangent bundle. Bowen and Walters found that in order to
extend known results from expansive homeomorphisms to expansive flows, the definition has
to involve the use of time reparametrizations of single trajectories. In 1979 H. B. Keynes and
M. Sears [66] extended the definition of expansive flows considering different families of time

reparametrizations.

In 1984 A. A. Gura [40] discovered another kind of expansiveness of flows. He proved that
the horocycle flow of a surface of negative curvature is separating! in both directions of time
and in a strong sense. Separating means that points on different global orbits are separated by
the the flow to a fixed separating constant. He proved that this separation occurs in positive
and in negative times. Moreover, he proved that these properties are shared with every global
time change of the flow. It is known that the horocycle flow is not expansive in the sense of
Bowen and Walters. In 1998 [29] A. DeStefano and G. Hall presented a separating flow on the
two-dimensional torus. It is a time change of a minimal flow. Another example was recently

given S. Matsumoto in [81].

As we said, the definition of expansive flow of Bowen and Walters does not admit singular
points. In 1984 M. Komuro [69], interested in the Lorenz attractor, introduced a different
definition called k*-expansiveness. It is known that the Lorenz attractor has a singular point
accumulated by regular orbits. Therefore it is not expansive in the sense of Bowen and Walters,

but it is k*-expansive as proved by Komuro.

Tt is interesting to note that Gura used the term separating for ezpansive. In the case of flows, the

separation property proved by Gura in the horocycle flow is different from Bowen-Walters definition.
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2.2.3 Robust expansiveness.

In 1975 R. Mané characterized the diffeomorphisms that are robustly expansive in the C!
topology as what he called quasi-Anosov diffeomorphisms. At this time Mané asked if every
quasi-Anosov diffeomorphism is in fact an Anosov one. The answer appeared one year later,
in the context of vector fields, when C. Robinson [110] found a quasi-Anosov flow that is
not Anosov on a eleven dimensional manifold. This example was simplified in the same year
by J. Franks and C. Robinson [32]. They constructed a quasi-Anosov diffecomorphism on a
three-dimensional manifold that is not Anosov. This was the first example of an expansive
homeomorphism on a three-dimensional manifold with wandering points.

Mané’s result for robustly expansive diffeomorphisms were generalized for continuum-wise
expansiveness by K. Sakai in 1997 [117]. The case of (Bowen-Walters) expansive C! vector
fields was considered by K. Moriyasu, K. Sakai and W. Sun in 2005 [88].

2.2.4 Topological dimension.

Mané was also interested in expansive systems from a topological viewpoint. In 1979 [78| he
proved that if a compact metric space admits an expansive homeomorphism then its topological
dimension is finite. In 1989 A. Fathi gave another proof [30] with different techniques. In [78§]
Mané also showed that the only spaces admitting minimal expansive homeomorphisms are
totally disconnected, or equivalently has vanishing topological dimension. This result extends
the corresponding one in the setting of hyperbolic diffeomorphisms and flows previously proved
by R. Bowen [18,19]. Mané’s proof was by contradiction, and assuming the existence of a non-
trivial continuum he was able to construct non-trivial connected stable sets. His techniques
were very important in the development of the theory.

In 1981 H. B. Keynes and M. Sears [67] extended these results for flows using the definition
of Bowen and Walters. They proved that if a compact metric space admits an expansive flow
then its topological dimension is finite. If in addition it is a minimal flow and has no spiral
orbits then the topological dimension of the space is at most one (i.e. local cross sections have
dimension zero). In the case of homeomorphisms a spiral point gives rise to a periodic point
but in the case of flows, since the definition considers reparametrizations, the conclusion is not
clear. It is still an open problem of the theory.

In 1993 H. Kato [61] extended Mané’s proofs for cw-expansive homeomorphisms.

2.2.5 Lyapunov functions and stable points

In 1892, Lyapunov [76] studied the problem of stability of solutions of differential equations.
He developed a theory of stability and extended the notion of energy function to what now

are called Lyapunov functions. He proved that the existence of a strictly decreasing Lypunov
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function for a equilibrium point implies its asymptotic stability. In 1949 J. L. Massera [79]

proved the converse result by constructing a Lyapunov function for such points.

In 1906 [33] M. Frechet published a fundamental work in topology. For example, the concept
of metric spaces were introduced there. But we wish to mention that he considered a special
metric in the space of curves. To measure the distance between two curves he considered
the infimum in all the reparametrizations of the sup-distance of the curves. In 1964 Massera
[80] considered the problem of stability of trajectories. He considered several variations in the

definition, being one of them stated using the Frechet-distance of curves.

In 1978 [26] C. Conley developed the theory of global Lyapunov functions and isolated
sets. Some authors referred to his results as the Fundamental theorem of dynamical systems.
The relationship with expansiveness is that expansiveness is equivalent with the diagonal being
isolated for the product homeomorphism. Therefore, the construction of Lyapunov functions

for isolated sets can be applied to expansive homeomorphisms.

In 1980 J. Lewowicz [72| introduced the techniques of Lyapunov functions for the study
of topological stability and expansive systems. He proved that a diffeomorphism is Anosov if
and only if there is a non-degenerate Lyapunov quadratic function in the tangent bundle. He
also considered Lyapunov functions for the problem of topological stability. Following Massera’s
techniques he proved that expansiveness is equivalent with the existence of a Lyapunov function.

Such functions will be a fundamental tool in his future works on expansive homeomorphisms.

In 1990 R. Ures [127]| gave another construction of a Lyapunov function for an expansive
homeomorphism. In 1993 M. Paternain [100] extended this constructions for expansive flows
on manifolds. He also proved that expansive flows on manifolds have no stable points in the

sense of Frechet-Massera.

2.2.6 Hyperbolic metrics.

In 1989 A. Fathi [30] was able to construct a special metric for an expansive homeomorphism
on a compact metric space. It has a hyperbolic behavior and extends previous constructions
by W. L. Reddy [109]. In [30] the hyperbolic metric is used to: 1) give a new proof of Mané’s
result, proving that if a compact metric space admits an expansive homeomorphism then its
topological dimension is finite and 2) prove that every expansive homeomorphism defined on a
compact metric space with positive topological dimension has positive topological entropy. This
result was extended by Kato [61] (of course, without using hyperbolic metrics) for cw-expansive

homeomorphisms. Hyperbolic metrics can also be used to construct Lyapunov functions.
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2.3 Expansiveness on manifolds

2.3.1 Continua and hyperspace.

For hyperbolic diffeomorphisms the stable manifold theorem is a very powerful result. In this
setting one starts with a model for local stable sets: the linear stable subspaces for the tangent
map. One concludes that local stable sets are embedded manifolds. In the case of expansive
homeomorphisms on manifolds one of the main problems is to determine the topological struc-
ture of stable sets. Some results, specially in low dimensions were developed. The techniques
used for this purpose are related with continua theory, a very interesting branch of general
topology. Specially important are the results characterizing Euclidean spaces.

Recall that a continuum is a compact connected metric space. According to Charatonik
[25]%, the definition is due to G. Cantor [23]. Hyperspace theory has its beginning with the work
of F. Hausdorft and L. Vietoris. Given a topological space, the hyperspace is the space of all
its closed subsets equipped with the Vietoris topology. For compact metric spaces, the Vietoris
topology can be defined with the Hausdorff metric introduced in 1914 in his fundamental book
[45]. This metric is very important in the study of expansive homeomorphisms, for example
stable continua on Peano spaces are constructed taking limits in this distance.

The problem of disconnecting the plane by continua was studied by Z. Janiszewski. In 1913
[58] he proved that if the intersection of two planar continua neither of which disconnects the
plane is connected, then their union also does not disconnect the plane. Janiszewski’s result is
applied in the study of expansive surface homeomorphisms. Essentially it allow us to think of
stable continua as if they were curves (a fact that is later proved).

Around 1913 it has been shown by S. Mazurkiewicz [82,83] and H. Hahn [42,43] that a metric
continuum is locally connected if and only if it is a continuous image of the unit closed interval.
This result reduces the problem of proving arc-connection to prove the local connection, a key
step in the study of expansive surface homeomorphisms.

In 1931 Mazurkiewicz [84] proved that the hyperspace of a space with positive dimension
has infinite dimension. This result combined with Mané’s result on the dimension of a space
admitting an expansive homeomorphism gives us that the expansiveness in the hyperspace of
the induced homeomorphism implies that the original space has dimension zero.

In 1933 H. Whitney [135] made two contributions that we wish to remark. The first one is
of a topological nature. He introduced what now are called size functions. They are continuous
functions defined on the hyperspace that measure the size of a compact set. The main feature is
that these functions are increasing with respect to inclusions of sets. Applications in continuum

theory were found later as can be seen in Nadler’s book [92]|. His motivation was to parameterize

2The interested reader should consult [25], as we did, for more on the history of continuum theory.
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a regular family of curves to obtain a flow. The second result that we wish to remark from
Whitney’s paper is the construction of local cross sections for continuous flows on metric spaces.
He gave a very simple construction, and later it was a very useful technique in the study of

expansive flows.

2.3.2 Plane continua

A plane continua is a compact connected subset of the Euclidean plane. Those spaces can be
classified according to its topological dimension and the number of components of its comple-
ment. A natural problem is to determine which plane continua admit expansive homeomor-
phisms. The first results in this direction were proved in 1954 |21] and 1960 |57] when Bryant,
Jacobsen and Utz proved that the interval and the circle do not admit expansive homeomor-
phisms.

The first example, to our best knowledge, of a plane continuum admitting an expansive
homeomorphism is the attractor introduced by Plykin in 1984 [105]. It is a one-dimensional
plane continua with four components in its complement. In 1990 Kato [59] proved that plane
Peano continua do not admit expansive homeomorphisms, generalizing the results for the in-
terval and the circle.

The result for the interval was generalized in another direction by Mouron in 2002 [89] by
proving that if a one-dimensional plane continuum does not separate the plane, then it does
not admit expansive homeomorphisms. In 2003 [90| he constructed a two-dimensional plane
continuum admitting expansive homeomorphisms. The same author in 2008 [91] extended the
result for the circle by showing that if a one-dimensional plane continuum separates the plane

in two components, then it does not admit an expansive homeomorphism.

2.3.3 Expansiveness on surfaces.

One of the first problems of the theory was to determine if the spheres admit expansive homeo-
morphisms. As we said, the one-dimensional case was solved in 1960 [57]. The two-dimensional
case was harder to solve. The first result to our best knowledge, is by P. Lam [71]. In 1970 there
it is proved that there is no orientation preserving expansive homeomorphism on the 2-sphere
with exactly one fixed point.

In 1988 K. Hiraide [50] proved that every expansive surface homeomorphism with the
pseudo-orbit tracing property is conjugate to a hyperbolic toral automorphism (a linear Anosov
diffeomorphism).

In 1989 J. Lewowicz [74] and in 1990 K. Hiraide [52] proved that the 2-sphere does not
admit expansive homeomorphisms and moreover, they showed that expansive homeomorphisms

of surfaces are pseudo-Anosov. Their proofs were based on a very nice study of the topology of
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stable sets. They were developed independently but can be divided in two parts being the first
one with some similarities. They first construct stable and unstable singular foliations. For
this they developed a topological stable manifold theorem, special for surfaces. The key point
in both works is to prove that local stable sets are locally connected in order to conclude the
arc-connection.

Then, in Lewowicz’s paper it is proved that the two-dimensional sphere does not admit ex-
pansive homeomorphisms with an argument of the Poincaré-Bendixon theory of surface flows.
In Hiraide’s article it is applied an index argument. The case of surfaces of higher genus, in
Lewowicz’s work is considered via universal coverings and proving that the expansive homeo-
morphism is conjugated to a pseudo-Anosov diffeomorphism. In Hiraide’s paper, it is directly
constructed two invariant measures, expanding and contracting, with arguments from the in-
terval exchange maps theory.

In 1991 L. F. He and G. Z. Shan [47] showed that no surface admits expansive flow without

singular points. Singular expansive flows of surfaces were later studied in [5].

2.3.4 Expansive homeomorphisms on three-manifolds.

In 1989 K. Hiraide [51] proved that expansive homeomorphisms of n-tori with the pseudo-orbit
tracing property are conjugate to hyperbolic toral automorphisms.

In 1993 J. L. Vieitez [130] proved that an expansive homeomorphism of a compact three-
dimensional manifold with a dense set of topologically hyperbolic periodic points has a local
product structure defined on an open invariant dense subset of the manifold. In 1996 [132]
Vieitez showed, under the same hypothesis, that the manifold is a torus and the homeomorphism
is conjugate to a linear Anosov isomorphism. Generalizations of these results were given later
in [4].

In 1996 [131] J. L. Vieitez considered expansive diffeomorphisms on three-manifolds without
wandering points. Assuming also that there is a hyperbolic periodic point with a homoclinic
intersection he proved that the diffeomorphism is conjugate to an Anosov isomorphism of the
torus.

In 2002 J. L. Vieitez [133] proved that on three-dimensional manifolds there are no pseudo-
Anosov diffeomorphisms by showing that the only expansive C'*?-diffeomorphisms on three

manifolds without wandering points are Anosov diffeomorphisms on the torus.

2.3.5 Expansive flows on three-manifolds.

In 1990 T. Inaba and S. Matsumoto [56] and also M. Paternain [100| considered expansive
flows on three-manifolds and extended the results of Lewowicz and Hiraide of expansive surface

homeomorphisms. They proved the existence of a stable and an unstable foliation with a finite
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number of singular periodic orbits. In [100] Paternain also generalized a previously known
result for Anosov flows. He proved that if a three-manifold admits an expansive flow then its
fundamental group has exponential growth. In particular, the three dimensional sphere does
not admit expansive flows without singular points. In this paper it is also proved that expansive

flows on manifolds has no stable points and Lyapunov functions are constructed.

In 1993 M. Brunella [20] proved that expansive flows on a three-manifold which is a Seifert
fibration of a torus bundle over the circle are topologically equivalent to a transitive Anosov

flow.

2.4 Geodesic flows and homoclinic classes

The study of homoclinic orbits and geodesic flows can be considered as the foundation of chaotic

dynamical systems.

2.4.1 Geodesic flows

Geodesic flows of surfaces with negative curvature were Hadamard’s motivation for introducing
symbolic dynamics and these abstract systems were the examples that Utz generalized when he
started the study of expansive homeomorphisms. Also, geodesic flows were Anosov’s motivation
for studying globally hyperbolic diffeomorphisms. Therefore, it is natural that the theory of

expansive systems turns its focus on these flows.

In 1981 J. Lewowicz [73] studied the topological stability of the geodesic flow of a surface
with non-positive curvature. As in Anosov’s work, expansiveness is the key property. The
definition of expansive flow used by Lewowicz can be found in [73, Lemma 4.1], there it is

stated using local cross sections.

In 1991 R. O. Ruggiero in [114] proved that if the geodesic flow of a compact Riemannian
manifold is C?! persistently expansive then the closure of the set of periodic orbits is a hyperbolic

set. If the manifold is two-dimensional then the geodesic flow is Anosov.

In 1993 M. Paternain [101] proved that expansive geodesic flows of compact Riemannian
surfaces have no conjugate points. The proof relies on the construction of the stable foliation
of [56,100]. It is also shown that any two expansive geodesic flows on the same surface are

topologically equivalent.

The interested reader should consult Ruggiero’s survey [115] for more on expansive geodesic

flows.
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2.4.2 Homoclinic classes

The homoclinic class of a hyperbolic periodic point is the closure of the intersection of its stable
manifold with its unstable manifold.

In 2005 [96] M. J. Pacifico, E. R. Pujals and J. L.Vieitez considered robustly expansive
homoclinic classes of diffeomorphisms on three-dimensional manifolds. In this paper they proved
that for an open and dense subset of the space of C! diffeomorphisms C'-robustly expansive
homoclinic classes are hyperbolic.

In 2009 M. J. Pacifico, E. R. Pujals, M. Sambarino and J. L.Vieitez [95] generalized the
result in [96] to higher dimensions. They proved that robustly expansive codimension-one
homoclinic classes are hyperbolic.

In 2008 M. J. Pacifico and J. L. Vieitez [97| considered robustly h-expansive homoclinic
classes for surface diffecomorphisms. Recall that h-expansiveness (entropy expansiveness) was
introduced by Bowen requiring that if a set has small diameter all the time then it has vanishing
topological entropy. In cited paper it is proved that robustly h-expansive homoclinic classes
have a dominated splitting, that is a weaker form of hyperbolicity. In 2010 |98] the same authors
extended the previous result for arbitrary dimension. The converse result is also studied in these
papers.

In 2013 T. Das, K. Lee and M. Lee [28] extended the previous and other problems to robustly

cw-expansive homoclinic classes.






Chapter 3
The meaning of expansiveness

The expansiveness of a homeomorphism f: X — X of a compact metric space can be defined
by requiring that the diagonal {(x,z) : © € X} be an isolated set for f x f. Also continuum-
wise expansiveness is related with isolated sets. Since many properties of expansiveness can be

derived from results of isolated sets, let us start with this topic.

3.1 Isolated sets

Let f: X — X be a homeomorphism of a compact metric space.

Definitions 3.1.1. A subset A C X is f-isolated if it is compact, invariant (f(A) = A) and
there is an open set U C X such that A C U and Npezf™(closU) = A. In this case we
say that U is an isolating neighborhood. If A is an isolating neighborhood of itself we say
that A is topologically isolated. If N,>of™(closU) = A we say that A is an attractor and if
Nn<of™(closU) = A we say that A is a repeller.

Notice that A is f-isolated if and only if it is f~!-isolated. Therefore, the following results
holds for f~! too.

Proposition 3.1.2. Let A be an f-isolated set with isolating neighborhood U. If for some x it
holds that f"(x) € closU for all n > 0 then dist(f™(x),A) — 0 as n — +o0.

Proof. By contradiction assume that there are ¢ > 0 and an integer sequence n; — 400 such
that if yp = f™(x) then dist(yx, A) > € for all £ > 1. Since y; € closU and closU is compact
we can assume that y, — y € closU. We have that if |j| < ny then f/(yz) € closU. Since
f is a homeomorphism we have that f7(y) € closU for all j € Z. But this is a contradiction
because dist(y, A) > ¢, in particular y ¢ A, and y € closU. ]

Proposition 3.1.3. If A is f-isolated but not topologically isolated then there is x ¢ A such
that dist(f"(x),A) = 0 as n — +00 or n — —oo.

15
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Proof. Let U be an isolating neighborhood of A. By the previous proposition we have to find
x such that f"(x) € U for all n > 0 or for all n < 0. Assume that for all x € U there is n > 0
such that f"(x) ¢ U. Since A is not topologically isolated there is xx — A with 2 ¢ A. Then,
there is ny > 0 such that f7(z) € U if j = 0,1,...,n, — 1 and f™(x3) ¢ U. Suppose that
[ xy) — y € clos(U). We have that y ¢ A and since f is a homeomorphism we have that
f™(y) € clos(U) for all n < 0. This finishes the proof. O

Proposition 3.1.4. Let A be an f-isolated set with isolating neighborhood U. Then for all
e > 0 there is n > 0 such that if dist(z,A) > € then there is j € Z such that |j| < n and

f(x) ¢ U.

Proof. By contradiction suppose that there is ¢ > 0 such that for all n > 0 there is z,, € X
such that dist(z,,A) > € and f/(x) € U if |j| < n. Eventually taking a subsequence we can
assume that x, — x. Then dist(z,A) > ¢ and it is easy to see that f"(z) € clos(U) for all
n € Z. This contradicts that U is an isolating neighborhood of A. m

Proposition 3.1.5. If A is a repeller f-isolated then for all € > 0 there is 6 > 0 such that if
dist(x, A) < § then dist(f~7(x),A) < e for all j > 0.

Proof. By contradiction assume that there are ¢ > 0, a sequence x,, € X and j, > 0 such
that dist(x,,A) — 0 and dist(f /" (z,),A) > e. Let U be an isolating neighborhood of A
and consider o € (0,¢) such that B,(A) C U. Let i, be such that dist(f~™(z,),A) > o and
dist(f~*(z,),A) <o foralli=0,1,...,4, — 1. Now a limit point of f~(z,) contradicts that
A is a repeller. n

3.2 Positive expansiveness

If the separation is required to be in positive time we have positive expansiveness.

Definition 3.2.1. A homeomorphism f: X — X is said to be positive expansive if there exists
d > 0 such that if dist(f"(z), f*(y)) < ¢ for all n > 0 then z = y.

Remark 3.2.2. Consider g: X x X — X x X defined by g(z,y) = (f(x), f(y)). Define the
diagonal A = {(x,z) : © € X}. Notice that f is positive expansive if and only if A is a repeller
g-isolated set. Therefore, applying Proposition 3.1.5, for all € > 0 there is 6 > 0 such that if
dist(z,y) < ¢ then dist(f~"(z), f"(y)) < e for alln > 0.

This concept is interesting in the study of the dynamics of endomorphisms i.e. continuous
maps not necessarily injective. In the case of homeomorphisms we will show that the study of
positive expansive homeomorphisms is reduced to permutations on finite sets. We follow the

proof from [27].
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Theorem 3.2.3 (Schwartzman [118]). The only compact metric spaces admitting positive ex-

pansive homeomorphisms are finite sets.

Proof. Fix an expansive constant € and the corresponding ¢ from Remark 3.2.2. Now cover X
by finitely many open sets Uy, ..., Uy with diameter smaller than . If X contains more then
N points, consider A C X such that |[A| = N + 1. For every k > 0, there are two different
points xy, yx € A such that f*(z;) and f*(yx) lie in the same set U,, of the covering. Then
dist(f*(xy), f(yx)) < 0 for i < k. Since A x A is finite, there exist two points x,y € A such
that dist(f*(z), fi(y)) < ¢ for infinitely many values of i > 0. By the previous argument,
dist(f*(z), f*(y)) < ¢ for all # > 0. This contradicts positive expansiveness. O

This result was first proved in [118] and another proof can be found in [75|. In Chapter 7
we will consider positive expansive flows. Theorem 3.2.3 means that for invertible dynamics
one has to allow the separation to occur at positive or negative times. In this way we have

expansiveness.

3.3 Expansiveness
As before, consider f: X — X a homeomorphism of a compact metric space.

Definition 3.3.1. We say that f is ezpansive if there is a constant § > 0 such that if
dist(f™(x), f"(y)) < ¢ for all n € Z then x = y. In this case we say that J is an ezpan-

swve constant.

The following equivalent definition was used by Utz in [128]. Denote by g: X x X — X x X
the homeomorphism induced by f by g(x,y) = (f(x), f(y)).

Proposition 3.3.2. A homeomorphism f is expansive if and only if the diagonal A = {(z,x) :
xr € X} is a g-isolated set.

Proof. 1t follows by the definitions. O

Proposition 3.3.3. If 0 is an expansive constant for f and dist(f™(a), f"(b)) < d for alln >0
then dist(f"(a), f™(b)) — 0 as n — 4o0.

Proof. Tt follows by Proposition 3.1.2. m

Remark 3.3.4. In [128] Utz proved that if f: X — X is an expansive homeomorphism and
| X | = oo then there are two points whose orbits are asymptotic in at least one sense. It is a

consequence of Proposition 3.1.8. The next proposition is a stronger result.
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Proposition 3.3.5. If X s infinite and f: X — X is an expansive homeomorphism then there
are a,b,c,d € X such that a # b, ¢ # d and

lim dist(f"(a), f*(b)) = nEIPoo dist(f"(c), f*(d)) = 0.

n—-+00

Proof. Let 6§ be an expansive constant for f. By Theorem 3.2.3 we have that f is not positive
expansive. Therefore, there are a,b € X such that dist(f"(a), f"(b)) < d for all n > 0. So,
we conclude by Proposition 3.3.3. To obtain the points ¢, d we can argue using that f~! is not

positive expansive. O

Two different points a,b € X are doubly-asymptotic if dist(f"(a), f"(b)) — 0 as n — +oo
and n — —oo. As we will see in Section 3.7.1 there are expansive homeomorphisms without
doubly-asymptotic points. We will also see in Section 3.7.1 that there can be trajectories

without asymptotic points.

3.3.1 Uniform expansiveness

Let 6 > 0 be an expansive constant for f: X — X and consider N: X x X — NU {oco} as the
function defined by

Nz ={ o 1)
7 min {|n| : dist(f"z, f"y) > 0,n € Z} ifz #y.

Definition 3.3.6. A homeomorphism is uniformly ezxpansive if for all ¢ > 0 there exists m > 0
such that if dist(z,y) > o then N(z,y) < m.

Proposition 3.3.7 (Bryant [22]). If X is a compact metric space then every expansive home-

omorphism is uniformly expansive.

Proof. 1t follows by Proposition 3.1.4. [

3.4 Variations of expansiveness

3.4.1 Point-wise expansiveness
The next definition is associated with a variable expansive constant.

Definition 3.4.1. A homeomorphism f is said to be pointwise expansive if for each x € X
there is 6(x) > 0 such that if dist(f"(z), f*(y)) < é(x) for all n € Z then z = y.

If the function ¢ is continuous we have expansiveness since X is compact. In 1970 Reddy
[107] introduced this definition and presented an example of a pointwise expansive homeomor-

phism that is not expansive. In Example 3.4.10 below we present a variation of this example,
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showing that in fact pointwise-expansiveness does not imply cw-expansiveness (see Definition
3.4.5).
In Section 3.7.1 we show that there are non-trivial positive pointwise-expansive homeomor-

phisms. It is a minimal system on a Cantor set.

Proposition 3.4.2 (Utz [128], Reddy [107]). Let p € X be an accumulation point and assume
that p s a periodic point of the pointwise erpansive homeomorphism f. Then there is x such
that dist(f™(x), f*(p)) = 0 as n — +o00 or n — —o0.

Proof. Pointwise expansiveness implies that periodic orbits of f are f-isolated sets. Therefore,

the result follows by Proposition 3.1.3. O]

Definition 3.4.3. We say that p is a stable point if for all € > 0 there is 6 > 0 such that if
dist(x,p) < 0 then dist(¢:(x), ¢(p)) < € for all t > 0.

Remark 3.4.4. If f is point-wise expansive and p is a stable periodic point then the orbit of p

18 an attractor f-isolated set.

Some techniques of expansive homeomorphisms involving arcs or connected sets seems not
to be adaptable for point-wise expansiveness. But another weaker version of expansiveness

exist.

3.4.2 Continuum-wise expansiveness

A continuum is a compact connected metric space. Every singleton {z} is a continuum. A
continuum is non-trivial if it is not a singleton. If a homeomorphism f: X — X is expansive
and C' C X is a non-trivial continuum then there is n € Z such that diam(f"C) > §if § > 0 is

an expansive constant for f. This property is very important in the study of expansiveness.

Definition 3.4.5. We say that f is continuum-wise expansive if there is 6 > 0 such that if
C' C X is a continuum such that diam(f™"(C)) < d for all n € Z then C is a singleton.

In 1993 Kato in [61] introduced this definition, weaker than expansiveness, for which a great

number of techniques and results of expansive homeomorphisms were adapted.

Remark 3.4.6. On totally disconnected spaces, as a Cantor set, every homeomorphism is cw-
expansive. This is because there are no non-trivial continua. Therefore cw-expansiveness does
not imply point-wise expansiveness (consider for example, the identity of a Cantor set). An

example on a compact surface is presented in Section 5. 3.

Let C denote the space of continua subsets of X with the Hausdorff metric. We recall the

definition.
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Definition 3.4.7. If K, L are compact subsets of X then the Hausdorff distance is
disty (K, L) =inf{e > 0: K C B.(L),L C B.(K)}.

Denote by f.: C — C the homeomorphism induced by a homeomorphism f: X — X by
fe(A) = {f(x) : v € A}. Define Fy = {{z} € C: x € X} the space of singletons of X. Notice

that Fy is compact and invariant under f,.

Proposition 3.4.8. A homeomorphism [ is cw-expansive if and only if Fy is an f.-isolated

set.
Proof. Tt follows by definitions. m

Proposition 3.4.9 (Mané [78]). If f: X — X is a cw-expansive homeomorphism and X is not
totally disconnected there is a non-trivial continuum C such that diam(f"C) — 0 as n — +0o0

orn — —oo.
Proof. 1t is a consequence of Proposition 3.1.3. O

Example 3.4.10. Let us sketch the construction of a Peano continuum admitting a pw-expansive
homeomorphism that is not cw-expansive. Let f: S — S be an expansive homeomorphism
of a two-dimensional torus (that we can consider embedded in Fuclidean R3). Denote by
x1,T9, T3, ... a sequence of periodic points of f such that if p; is the period of x; then the
sequence p; is increasing. For each f¥(x;) with j = 1,...,p; consider a torus S;; of diameter
smaller than 1/p; such that S;j N Sy # O only if i =i’ and j = j'. Moreover, assume that
SNSi; = {f(z;)}. Consider the space X = SUUS;; the union of all these tori. On X consider
a homeomorphism g such that g|S = f and g(Si;) = Si(j+1), 9(Sip;) = Sa and gP: Sij — Si;
is an expansive homeomorphism. We have that the diameter of the tori g"(S;;) is small for all

n € Z and then g is not cw-expansive. By construction it can be proved that g is pw-expansive.

3.4.3 N-expansiveness

Let us give another notion that was introduced in [87]. The cardinality of a set A will be
denoted as |A|.

Definition 3.4.11. Given N > 1, a homeomorphism is N-ezpansive if there is 0 > 0 such that
if diam(f*(A)) < 6 for all k € Z then |A| < N.

By definitions we have that expansiveness implies N-expansiveness. Also N-expansiveness
. . . , .
implies pw-expansiveness and cw-expansiveness. See Morales’s paper [87] for more properties

of N-expansive homeomorphisms.
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3.5 Hyperbolic metric

Hyperbolic sets are known to be expansive. The converse is, in some sense, true. We mean,
every expansive homeomorphism admits a hyperbolic metric. This is the topic of the present
section. The construction is due to Fathi [30]. Let f: X — X be an expansive homeomorphism

on the compact metric space (X, dist).

Definition 3.5.1. A metric d on X defining the same topology as dist is hyperbolic if there
are numbers k£ > 1 and 6 > 0 such that

max{d(f(z), f(y)),d(f~ (x), f~(y))} = min{kd(z,y), 5}
for all z,y € X. In this case we say that k is the expanding factor.

Since f and f~! are continuous, there is ¢ > 0 such that

max{d(fz, fy),d(f 'z, [Tly)} <§

if dist(z,y) < 0. So, the hyperbolicity of dist implies that if dist(x,y) < o then dist(fx, fy) >
k dist(z,y) or dist(f 'z, f~'y) > kdist(x,y). With a hyperbolic metric one has a nice control
of nearby points: the distance exponentially increases in one positive or negative iterate.

To show how useful a hyperbolic metric is, we offer the following result.

Proposition 3.5.2. If dist is a (k,d)-hyperbolic metric for [ and dist(f"x, f*y) < § for all
n > 0 then

dist(fa, fg) < T
Moreover,

dist(fiz, fly) < —diSt]Ef’ y)
for all i > 0.

Proof. Let x; = f'x and y; = f'y. By contradiction suppose that kdist(z1, ;) > dist(xg,yo)-
The hyperbolicity of the metric requires that

max{dist(xs, y2), dist(xo, yo) } > min{k dist(z1,y1),d}.
Since dist(xo, o) < 0 and dist(xz, y2) < 0 we have that dist(za,y2) > kdist(x,y;). Again
max{dist(xs, y3), dist(x1, 1)} > min{k dist(xs, y2),d}.
Similar argument gives us that dist(xs, y3) > k dist(z2, y2). By induction we can prove that
dist(xiq1, yir1) > kdist(x;, v;),

for all 4 > 0. This contradicts that dist(x;,y;) < d for all ¢ > 0. O
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3.5.1 Construction of a hyperbolic metric

Let 6 > 0 be an expansive constant for f. By Proposition 3.3.7 there is m such that if
dist(x,y) > 6/2 then max, <, dist(f"z, f"y) > 6. Let a > 1 be such that o™ < 2. Recall that

the function N was defined as

Nz ={ o 32)
’ min {|n| : dist(f"x, f*y) > o0,n € Z} if x #y.

and define p: X x X — R by

pla,y) = a~ N,
We will show that p is a quasi-metric. So applying Proposition A.1 we have the metric D
associated to p. Choose ng such that K = (a™/4) > 1. Let k = K", We define another

metric d b
' DU ). ()

d(z,y) = |i\I£nE?il o (3.3)
We will show that d is a hyperbolic metric for the expansive homeomorphism f.
To show that p is a quasi-metric we need some Lemmas.
Lemma 3.5.3. If
) ) 1
(2 (2 < _
|3\23’f1p(f (), f'(y) < ~
then
max{p(f"(z), ["(y)), p(f 7" (), f " (y))} = " p(z,y). (3.4)
Proof. Notice that the hypothesis means N(x,y) > n and the thesis is equivalent to
N(z,y) = n+min{N(f"(z), (), N(f"(x), /"(y))}-
So it is trivial. N

Lemma 3.5.4. For all z,y,z € X it holds that
min{N(z,y), N(z,2)} < m+ N(z,p).

Proof. This follows from the triangular inequality for the metric dist and the definition of m.
The idea is: when the iterates of z and y are at a distance greater then ¢ then z can not be at

a distance less than §/2 from z and y. O
Proposition 3.5.5. The function p is a quasi-metric defining the topology of dist.

Proof. The first three items (of the definition of quasi-metric) follows by definitions. To prove
the last one recall that o™ < 2 and the previous Lemma.

The quasi-metric p defines the topology of dist, because f is an expansive homeomorphisms.
O
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From (3.4) and (A.10), we have that if

then
max{D(f"(z), ["*(y)), D(f"(z), ["(y))} = %D(:ﬂ,y) (3.5)

Theorem 3.5.6 (Fathi [30]). Ezpansive homeomorphisms on compact metric spaces admit

hyperbolic metrics.

Proof. By direct inspection, it is easy to establish the following inequality:

max{d(f(2), ), d(F @), £ @)} 2 mae 2T W)

 o<lil<no klil=1

Now this last quantity is the maximum of the following two quantities A and B:

o<litna ki1 ol KW (36)
and
g = max{D(f"(z), [ (y)), D(f (), f"(y))}
- e _
Suppose now that d(z,y) < m=r. Then by (3.5), (3.3) and the definition of k, we get:
B > kD(x,y). (3.7)
It is easy to conclude from (3.6) and (3.7) that if d(z,y) > 1/4ak™ =" then
max{d(f (), f(y)), d(f(x), [ (W)} = kd(z.y). (3.8)
Since X is compact, we can find § > 0 such that if d(z,y) > 1/4ak™ ! then
max{d(f (@), f(y)),d(f(x), [ (y))} = 0. (3.9)

From (3.8) and (3.9), we have

max{d(f (), f(y)),d(f*(x), f(y))} = min{kd(,y),0}.

for all z,y € X. O]
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3.6 Lyapunov functions

As we have explained in the previous section, expansiveness is equivalent with the existence
of a hyperbolic metric. Another characterization can be obtained using Lyapunov functions.
This idea is due to Lewowicz. In this section we develop the technique of Lyapunov functions
for expansive systems from a different viewpoint from Lewowicz’s one. Our method is based
on isolated sets for flows in the sense of Conley.

In Dynamical Systems and Differential Equations it is important to determine the stability
of trajectories and a well known technique for this purpose is to find a Lyapunov function. In
order to fix ideas consider a continuous flow ¢: R x X — X on a compact metric space (X, dist)
with a singular (or equilibrium) point p € X i.e., ¢;(p) = p for all t € R. A Lyapunov function
for p is a continuous non-negative function that vanishes only at p and strictly decreases along

the orbits close to p.

Definition 3.6.1. We say that p is asymptotically stable if it is stable and there is dg > 0 such
that if dist(z,p) < do then ¢y(z) — p as t — +oo.

The existence of a Lyapunov function for an equilibrium point implies the asymptotic sta-
bility of the equilibrium point.

A remarkable result, first proved by Massera in [79], is the converse: every asymptotically
stable singular point admits a Lyapunov function of class C*. Later, other authors obtained
Lyapunov functions with different methods, see for example [14,26|. In [55] a generalization is
proved in the context of arbitrary metric spaces. The purpose of this section is to develop a
new technique that allows us to construct Lyapunov functions for different dynamical systems
as: isolated sets, expansive homeomorphisms and continuum-wise expansive homeomorphisms.
Our techniques are based on the size function p introduced by Whitney in [135].

In order to give a motivation let us show how to construct a Lyapunov function for an
asymptotically stable singular point. As before, denote by K the hyper-space of non-empty
compact subsets of X with the Hausdorff distance.

Definition 3.6.2. A size function is a continuous function p: K — R satisfying:
1. pu(A) > 0 with equality if and only if A has only one point,
2. if AC B and A # B then u(A) < u(B).

In [135] it is proved that size functions exists for every compact metric space.

Theorem 3.6.3 (Massera [79]). If ¢ is a continuous flow on X with an asymptotically stable
singular point p then there are an open set U containing p and a continuous function V: U — R
satisfying:

1. V(x) >0 for all x € U with equality if and only if x = p and
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2. 4ft >0 and {¢s(x) : s € [0,t]} C U then V(¢(z)) < V(x).

Proof. By the conditions on p there are dy,d > 0 such that if dist(z,p) < ¢ then ¢;(z) € By, (p)
for all ¢ > 0 and ¢;(x) — p as t — oco. Define U = Bs(p) and V: U — R as

V() = u({du(x) : t = 0} U{p})

where p is a size function. Since ¢;(x) — p we have that

O(x) = {¢u(x) : t = 0} U {p} (3.10)

is a compact set for all z € U. Notice that if £ > 0 then O(¢:(z)) C O(z) and the inclusion is
proper. Therefore, V(¢(z)) < V(z) because pu is a size function. Also notice that V(p) =0
and V(z) > 0 if  # p. In order to prove the continuity of V', we will prove the continuity
of O: U — K(X), the map defined by (3.10). Since p is continuous we will conclude the
continuity of V.

Let us prove the continuity of O at x € U. Take ¢ > 0. By the asymptotic stability of p
there are p, T > 0 such that if y € B,(z) then ¢:(y) € B./2(p) for all t > T'. By the continuity
of the flow, there is r > 0 such that if y € B,(z) then dist(¢:(z), ¢:(y)) < e for all t € [0,T].
Now it is easy to see that if y € Buyin{p,} () then disty(O(z), O(y)) < ¢, proving the continuity
of O at x and consequently the continuity of V. [

Let us recall that size functions can be easily defined. A variation of the construction given
in [135], adapted for compact metric spaces, is the following. Let ¢1,¢2,¢s,... be a sequence

dense in X. Define y;: K — R as
wi(A) = max dist(g;, x) — min dist(g;, x).

The following formula defines a size function p: K — R

p(ay =3

207

as proved in [135]. In Section 3.6.2 we extend Theorem 3.6.3 by constructing a Lyapunov
function for an isolated invariant sets.

For the study of expansive homeomorphisms Lewowicz introduced in [72| Lyapunov func-
tions. He proved that expansiveness is equivalent with the existence of such function. In Section
3.6.3 we give a different proof of this result by constructing a Lyapunov function defined for
compact subsets of the space. With our techniques we prove that continuum-wise expansiveness
is equivalent with the existence of a Lyapunov function on continua subsets of the space.

Let us start explaining how to construct a Lyapunov function in X x X using a hyperbolic

metric.
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3.6.1 Lyapunov functions via hyperbolic metrics

In [75] a quadratic form is constructed for an Anosov diffeomorphism. In this section we will
use the technique of [75] to construct a Lyapunov function from a hyperbolic metric.

A Lyapunov function for a homeomorphisms f: X — X is a continuous map V: N — R
defined on a compact neighborhood of the diagonal on X x X, such that V(z,z) = 0 for all
xr € X and

AV (z,y) =V (fz, fy) — V(z,y) >0

if t #y and x,vy, fx, fy € N.

Theorem 3.6.4 (Lewowicz [72]). A homeomorphism of a compact metric space is expansive if

and only if it admits a Lyapunov function.

Proof. Converse. Let a > 0 be such that if dist(z,y) < « then (z,y) € N. We will show that
a is an expansive constant. Suppose that dist(f"x, f"y) < a for all n € Z. If V(z,y) > 0 then
V(frx, f'y) > V(x,y) for all n > 0. Then there is p > 0 such that dist(f"xz, f"y) > p for all

n > 0 because V is continuous and vanishes on the diagonal. We have that
min{ AV (z,y) : dist(z,y) > p} = p

is positive since N is compact. So

n—1

V(" fy) = Vi, y)+ > AV(f, fly) > V(z,y) + (n = D,

1=0

which is a contradiction because V' is bounded. If V(x,y) < 0 we get the same contradiction
considering f~!. If V(z,y) = 0 and = # y then V(fx, fy) > 0 and we can repeat the argument
with fz and fy. We have proved that z = y.

Direct. Now we assume that f is expansive. We consider a (k, §)-hyperbolic metric dist. If
k™ > 2 then there is o > 0 such that if 0 < dist(z,y) < o then

max{dist(f"x, fMy),dist(f~ "z, f"y)} > 2dist(z, y). (3.11)

Let N = {(z,y) € X x X : dist(z,y) < o} and define V: N — R as

m—1 m—1
V(e,y) =Y dist(f" iz, frry) =Y dist(fz, fy).
=0 =0

Notice that
AV (z,y) = dist(f"a, f2y) — 2dist(f", f™y) + dist(x,y).

So, applying (3.11) we have that AV (x,y) > 0 if = # . ]
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3.6.2 Lyapunov Functions for Isolated Sets

In this section we consider continuous flows on compact metric spaces. The purpose is to
construct a Lyapunov for an isolated set of the flow using a size function. First we consider the

case of an isolated set consisting of a point.

Isolated Singularities Let ¢ be a continuous flow on a compact metric space (X,dist). A
point p € X is singular for ¢ if ¢,(p) = p for all t € R. A singular point p € X is isolated if
there is an open isolating neighborhood U of p such that if ¢g(x) C U then z = p.

Definition 3.6.5. An open set U is an adapted neighborhood of an isolated singular point
p € U if for every orbit segment [ C clos(U) with extreme points in U it holds that [ C U.

Given a set A C X and x € A denote by comp,(A) the connected component of A that

contains the point x.
Proposition 3.6.6. Every isolated singular point has an adapted neighborhood.

Proof. Let r > 0 be such that clos(B,(p)) C N. For p € (0,7) define the set

U, = {x € By(p) : comp,(¢r(x) N B:(p)) N B,(p) # 0}

By the continuity of ¢ we have that U, is an open set for all p € (0,r). Let us prove that if p
is sufficiently small then U, is an adapted neighborhood. By contradiction, suppose that there
are p, — 0, a,,b, € U, , t, > 0 such that b, = ¢y, (a,) and I, = ¢p4,)(an) C clos(U,,) but [,
is not contained in U,,.

If [, C B,(p) then [, would be contained in U,, . Since we know that this is not the case
there is s, € (0,¢,) such that ¢, = ¢;,(a,) € 0B,(p). Since an,b, € U,, we know that
comp, (¢r(an) N By(p)) N B,(p) # 0 and comp, (¢r(bn) N Br(p)) N B,(p) # 0. Then, there
must be u, < 0 and v,, > 0 such that ¢y, (cn), ¢, (cn) € By, (p) With ¢p, v.(cn) C clos(B,(p),
u, — —oo and v, — +oo. If ¢ is a limit point of ¢, we have that ¢r(c) C B,(p) and ¢ # p.
This contradicts that clos(B,(p)) is contained in an insolating neighborhood of p and proves
the result. O

Fix an isolated point p with an adapted neighborhood U. Consider the sets

Wip)={xeU: t£+moo¢t(x) = p and ¢r+(z) C U},
Wip)={xeU: tgr_noocﬁt(x) = p and ¢r-(x) C U},

For z € U define the orbit segments

OZ}([L’) - Compz(U N ¢[0,+OO) (I))7
Oy (z) = comp, (U N ¢ (oo ,0)()).
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Define C'= X \ U and let V5, V.": U — K be defined as

{ V()

V-(x)

p

clos(O () U W¥(p)) U C,
clos(Og () UW§(p)) U C.

Definition 3.6.7. A Lyapunov function for an isolated point p is a continuous function V': U —
R defined in a neighborhood of p such that if ¢ > 0 and ¢ 4(x) C U\{p} then V(z) > V(¢:(x)).

The following is a well known result, see for example [26]. The proof via size functions

seems to be a new one.

Theorem 3.6.8. If p is an isolated point and U is an adapted neighborhood of p then the maps
V;r and V7 are continuous in U. If in addition, p is a size function on K then V: U — R
defined as

V(x) = n(V,"(2)) — u(V, ()

1s a Lyapunov function for p.

Proof. Let us prove the continuity of V;“ by contradiction. Assume that x, — =z € U and
VH(xn) — K with the Hausdorff distance but K # V,'(z). By definitions we have that

clos(W(p)) UC C KNV, (z). (3.12)

Recall that C' was defined as the complement of U in X. Take a point y € K\V,*(x)UV,"(z)\ K.
By the inclusion (3.12) we know that y ¢ clos(W}(p)) U C. We divide the proof in two cases.

Case 1. Suppose first that y € K \ V(). Since y € K there is a sequence t,, > 0 such that
P, (xn) = y and @po4,1(x,) C U. If t,, = oo then x € Wy (p). Consequently, y € W(p), which
is a contradiction. Therefore ¢, is bounded. Without loss of generality assume that t, — 7 > 0
and then ¢,(x) = y. Thus ¢y (x) C clos(U). Since y ¢ C we have that y € U. Now, since
U is an adapted neighborhood we conclude that ¢jo, () C U and then y € O (z) C V,*(2).
This contradiction finishes this case.

Case 2. Now assume that y € V,F(2) \ K. In this case we have that y = ¢4(x) for some
s > 0 and ¢ (x) C U. Then ¢4(x,) — y and y € K. This contradiction proves that V" is
continuous in U.

The continuity of V™ is proved in a similar way. Let us show that V' is a Lyapunov function
for p. The continuity of V' in U follows by the continuity of V,", V.= and the size function .

Now take x ¢ U \ {p}. We will show that V' decreases along the orbit segment of z
contained in U. Notice that for all ¢ > 0, Of(¢:(z)) C Ofi(x) if ¢py(x) C U. Therefore
Vi (¢i(x)) < V,H(O*(x)). The equality can only hold if 2 € W(p). But in this case we
have that = ¢ Wy (p) because Wii(p) N Wi (p) = {p}. Then V" (¢:(z)) > V, (). Therefore,
V(ee(z)) < V(x) and V is a Lyapunov function for p. O
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Isolated Sets Let ¢: R x X — X be a continuous flow on a compact metric space X.
Consider a ¢-invariant set A C X, i.e., ¢;(A) = A for all ¢ € R. We say that A is an isolated
set with isolating neighborhood U if ¢g(x) C U implies z € A.

Definition 3.6.9. A Lyapunov function for an isolated set A is a continuous function V: U — R

defined on an open set U containing A such that:
1. V() =0ifxz € A,
2. if ¢y () C U\ A then V(z) > V(gi()).

Let us show how the construction of a Lyapunov function for an isolated set can be reduced

to the case of an isolated singular point.

Theorem 3.6.10. FEvery isolated set admits a Lyapunov function.

Proof. Consider the set Y = (X \ A) U{A}. On Y define the distance d as
d(z,y) = min{dist(z, y), dist(z, A) + dist(y, A) }.

It is easy to see that (Y,d) is a compact metric space. Also, the flow ¢ induces naturally a
flow ¢ on Y with A as an isolated singular point. Consider from Theorem 3.6.8 a Lyapunov
function for A as an isolated singular point of ¢’. This function naturally defines a Lyapunov

function for A as an isolated set of ¢. O

3.6.3 Applications to expansive homeomorphisms

Let f: X — X be a homeomorphism of a compact metric space (X, dist).

Theorem 3.6.11. Every isolated set A of a homeomorphism f admits a Lyapunov function,

that is, a continuous map V: U C X — R defined on a neighborhood of A such that:
1. V() =0ifx € A,
2. V(x) >V (f(x)) if x, f(x) € U\ A.

Proof. Consider ¢: R x Xy — Xy the suspension of f. Consider i: X — Xy a homeomorphism
onto its image such that i(X) is a global cross section of ¢. It is easy to see that A is an isolated
set for f if and only Ay = ¢g(i(A)) is an isolated set for ¢. Now consider a Lyapunov function
V" for Ay. A Lyapunov function for f can be defined by V(z) = V'(i(z)). 