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Abstract

It is a thesis about dynamical systems with some kind of expansiveness. We consider

homeomorphisms and �ows on compact metric spaces. The smooth category is considered and

some results are proved for manifolds. Several variations of expansiveness are considered. In

the discrete time case we consider: cw-expansiveness, N -expansiveness, hyper-expansiveness.

For the case of continuous �ows we study: geometric and kinematic expansiveness, positive

expansiveness and robust expansiveness. The results we obtained were or will be published in

[6�10].

Resumen

Esta tesis versa sobre sistemas dinámicos con diversos tipos de expansividad. Consideramos

homeomor�smos y �ujos en espacios métricos compactos. También se considera la categoría

diferenciable y algunos resultados se demuestran en variedades. Diferentes variantes de la

expansividad son tomados en cuenta. En tiempo discreto: cw-expansividad, N -expansividad,

hiperexpansividad. En el caso de �ujos: expansividad cinemática y geométrica, expansividad

positiva y expansividad robusta. De los resultados obtenidos algunos fueron y otros serán

publicados en las referencias [6�10].
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Chapter 1

Introduction

In this work we will consider several forms of expansivity and di�erent results are proved. Let

us remark some of the results that we have obtained in this Thesis. We characterize hyper-

expansive homeomorphisms. We prove that 2-expansive homeomorphisms on surfaces without

wandering points are expansive. We prove the non-existence of smooth kinematic expansive

suspensions of irrational rotations. We prove that positive expansive �ows are supported on a

�nite number of perodic orbits.

Let us describe the contents of the Thesis. We start in the next chapter with a panoramic

view of the theory of expansive systems. We review, from our viewpoint, the main results from

1950 until present days. This chapter is the result of several years of bibliographical research.

The purpose is to explain why the idea of expansivity started, how it was developed, which are

the guiding questions and where is it going now.

In Chapter 3 the meaning of expansiveness is investigated by showing several classical and

well known equivalent de�nitions. One of this equivalences is due to Lewowicz and is related

with Lyapunov functions. We present a new approach to this topic by introducing Whitney's

size functions for the construction of Lyapunov functions for isolated sets. Since expansivity

and cw-expansivity are related with isolated sets, applications to these systems are given. Other

known variations of expansivity are presented and examples are given. The whole chapter is

seen from the viewpoint of isolated sets, it is my opinion that this simpli�es the exposition.

In Chapter 4 we �rst review known results of expansive and cw-expansive homeomorphisms.

These results are related with Lyapunov stable points, stable sets and topological dimension.

In the second section we study hyper-expansiveness, that is, the expansiveness of the induced

homeomorphism in the space of compact subsets equipped with the Hausdor� metric. We

give a characterization of such systems. In the �nal section we introduce a new variation of

expansiveness that we call (m,n)-expansiveness. Several basic properties are obtained.

In Chapter 5 we apply Lewowicz's techniques in the study of expansive surface homeo-

morphisms. We prove that expansiveness is equivalent to cw-expansiveness in the absence of

1
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bi-asymptotic sectors. In the second section we prove that 2-expansiveness implies expansive-

ness if the non-wandering set is the whole surface. An example is given in the third section to

prove that there are 2-expansive surface homeomorphisms that are not expansive.

In Chapter 6 we consider expansive �ows from a kinematic and a geometric viewpoint.

Several technical variations are considered with respect to the kind of time-reparametrizations

allowed. The hierarchy of this de�nitions is studied on compact metric spaces and on compact

surfaces. Kinematic expansiveness of suspensions and surface �ows is studied.

In Chapter 7 we consider positive expansive �ows. In the kinematic framework we study

basic properties of such �ows especially on surfaces. For positive geometric expansive �ows we

prove that they consist of a �nite number of compact orbits.

In Chapter 8 perturbations of kinematic expansive �ows are considered in the C1 category.

In the �rst section we consider conservative vector �elds in the annulus. In the second one we

prove that robust kinematic expansiveness is equivalent to robust geometric expansiveness in

the absence of singularities.



Chapter 2

A panoramic view

In this chapter we will review the development of the theory of expansive systems.

2.1 Unstable dynamics

In this section we present the �rst results, the main questions and the main variations of the

de�nition of expansive system.

2.1.1 Unstable homeomorphisms.

The study of expansive homeomorphisms started in 1950 when W. R. Utz [128] de�ned these

systems with the name of unstable homeomorphisms. In this �rst article some general properties

were proved related with asymptotic trajectories, the cardinality of the set of periodic points

and the powers of expansive homeomorphisms.

In Utz's paper the examples on compact spaces were subdynamics of shift maps de�ned

on Cantor sets. It seems to be the case that Utz's motivation for the de�nition of expansive

homeomorphism was to generalize this kind of systems. In the references of the paper one

�nds a book on general topology by W. Sierpinski and four works on symbolic dynamics by the

authors M. Garcia, W. H. Gottschalk, G. A. Hedlund and M. Morse that dates from 1938 to

1948. See [37,38,48,49]. These papers can be considered as part of the foundation of abstract

symbolic dynamics.

In order to illustrate the kind of problems studied in topological dynamics before Utz's

paper, let us recall a question raised by Birkho� [15] in 1936: given a minimal set and two

points in the set, does there exist an orbit preserving homeomorphism of the minimal set

onto itself transforming one of these points into the other? In [49] Hedlund gave a negative

answer. He considered a Sturmian minimal subshift with two asymptotic points. Therefore we

have that Utz's result on the existence of asymptotic orbits of expansive homeomorphisms is a

3



4 2.1. UNSTABLE DYNAMICS

generalization of Hedlund's result.

We can say that the theory of expansive homeomorphisms started based on symbolic dy-

namics but it quickly developed by itself. One of the main questions of the theory was present

since the beginning:

What compact metric spaces can carry an expansive homeomorphism?

In 1954 B. Bryant [21] proved that the interval does not admit such systems and raised another

natural question:

Are there expansive homeomorphisms on connected spaces?

In his note of 1955, R. F. Williams [137] proved that the two-solenoid is expansive. This was the

�rst continuum shown to admit an expansive dynamic. In 1960 J. F. Jakobsen and W. R. Utz

[57] proved that the compact 2-dimensional disc does not admit expansive homeomorphisms;

in fact they showed that the circle does not admit such dynamics. In this way it was proved

that no compact one-dimensional manifold can carry an expansive homeomorphism. In 1962

B. Bryant [22] discovered the property of uniform expansiveness that would be very useful in

future works. Other general properties were proved in this and other articles and a new question

gained in interest:

May a locally connected space admit an expansive homeomorphism?

The only known examples at this time were the shift map and the two-solenoid. These examples

are supported on non-locally connected spaces. No manifold was known to admit an expansive

homeomorphism.

The theory will grow with more examples, specially from the hyperbolic dynamics. But it

will be also expanded from another viewpoint, several variations of the de�nition will follow

the development through the years. Let us in the next section review this topic.

2.1.2 Some variations of expansiveness.

The de�nition of expansiveness has shown to have a robust interest. That is, small variations

on the de�nition are also interesting. The �rst of such variations appeared in 1952 when S.

Schwartzman [118] considered what now is called positive expansiveness. His de�nition requires

that di�erent points are separated in positive time. He proved that the only compact metric

spaces admitting such homeomorphisms are �nite sets.

In 1970 W. L. Reddy [107] introduced point-wise expansiveness, a variation that does not

require the existence of a uniform expansive constant but each point has a positive one. He

proved that even on a compact space, point-wise expansiveness does not imply expansiveness.

In spite of this he generalized results for this weaker de�nition.
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Another generalization of expansiveness was introduced in 1972 [18] by R. Bowen called

entropy-expansiveness or h-expansiveness. The de�nition requires that if a set has small diam-

eter for all the time then it has vanishing entropy. Some results concerning the entropy of an

expansive homeomorphism were developed in this paper.

W. Bauer and K. Sigmund in 1975 [13] considered the relationship between a homeomor-

phism on a compact metric space and its induced action on the space of probability measures

and the space of compact subsets called hyperspace. They proved that the induced homeomor-

phism on the probabilities is expansive if and only if the original space is �nite. For the action on

the hyperspace they gave some examples proving that the expansiveness of the homeomorphism

does not imply the expansiveness of the induced homeomorphism.

In 1993 [61] H. Kato de�ned continuum-wise expansiveness by requiring that if a continuum

has small diameter for all the time then it is a singleton. This de�nition seems to be based on

the techniques developed for expansive homeomorphisms, it was designed in order to be able

of extending important results.

In 2011 C. A. Morales [85] considered measure-expansiveness by requiring that the proba-

bility of two orbits remain close each other for all time is zero. He extended results of expansive

systems on compact metric spaces to the measure-expansive context. In 2012 the same au-

thor [87] de�ned another variation called N -expansiveness. Now a set of points whose orbits

are close for all the time has cardinality smaller than N . There, some results of expansive

homeomorphisms are generalized to this context.

2.2 Hyperbolic systems

2.2.1 Fundamental examples.

The existence of expansive homeomorphisms on continua was �rst proved by W. L. Reddy

[106]. In 1965 he showed that the torus of dimension greater than one admits expansive home-

omorphisms.

In 1967 a fundamental paper in dynamical systems of D. V. Anosov [1] appeared. A gen-

eralization of the geodesic �ow of a compact manifold of negative curvature was developed in

this work. This generalization is now called as Anosov systems. They are characterized by a

uniform hyperbolicity of the tangent map on the whole ambient manifold. He used the property

of expansiveness to show that such systems are structurally stable.

At the same year another fundamental paper in dynamical systems was published. In

[121] S. Smale developed the theory of hyperbolicity of invariant sets of di�eomorphisms and

introduced the de�nition of Axiom A di�eomorphisms. Expansiveness has shown to be a very

important property of such sets.
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In 1970 T. O'Brien andW. L. Reddy [94] showed that the surfaces of positive genus admit ex-

pansive homeomorphisms. These examples are now known as pseudo-Anosov di�eomorphisms.

With all these examples (Anosov systems, hyperbolic sets and pseudo-Anosov di�eomorphisms)

the theory of expansive systems was highly enriched. Of course the theory of dynamical systems

too.

2.2.2 Expansive �ows.

A fundamental work for the theory of expansive �ows, written by R. Bowen and P. Walters,

appeared in 1972 [17]. In this paper they made a careful analysis of the de�nition in the context

of continuous �ows on compact metric spaces, and gave extensions of results known for Anosov

systems, mainly related with the topological entropy. As we said, the expansiveness of �ows

was �rst considered by Anosov, and therefore it is natural that such �ows have no singular

(i.e. equilibrium) points because the motivation of Anosov was the study of geodesic �ows that

usually are restricted to the unit tangent bundle. Bowen and Walters found that in order to

extend known results from expansive homeomorphisms to expansive �ows, the de�nition has

to involve the use of time reparametrizations of single trajectories. In 1979 H. B. Keynes and

M. Sears [66] extended the de�nition of expansive �ows considering di�erent families of time

reparametrizations.

In 1984 A. A. Gura [40] discovered another kind of expansiveness of �ows. He proved that

the horocycle �ow of a surface of negative curvature is separating1 in both directions of time

and in a strong sense. Separating means that points on di�erent global orbits are separated by

the the �ow to a �xed separating constant. He proved that this separation occurs in positive

and in negative times. Moreover, he proved that these properties are shared with every global

time change of the �ow. It is known that the horocycle �ow is not expansive in the sense of

Bowen and Walters. In 1998 [29] A. DeStefano and G. Hall presented a separating �ow on the

two-dimensional torus. It is a time change of a minimal �ow. Another example was recently

given S. Matsumoto in [81].

As we said, the de�nition of expansive �ow of Bowen and Walters does not admit singular

points. In 1984 M. Komuro [69], interested in the Lorenz attractor, introduced a di�erent

de�nition called k∗-expansiveness. It is known that the Lorenz attractor has a singular point

accumulated by regular orbits. Therefore it is not expansive in the sense of Bowen and Walters,

but it is k∗-expansive as proved by Komuro.

1It is interesting to note that Gura used the term separating for expansive. In the case of �ows, the

separation property proved by Gura in the horocycle �ow is di�erent from Bowen-Walters de�nition.
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2.2.3 Robust expansiveness.

In 1975 R. Mañé characterized the di�eomorphisms that are robustly expansive in the C1

topology as what he called quasi-Anosov di�eomorphisms. At this time Mañé asked if every

quasi-Anosov di�eomorphism is in fact an Anosov one. The answer appeared one year later,

in the context of vector �elds, when C. Robinson [110] found a quasi-Anosov �ow that is

not Anosov on a eleven dimensional manifold. This example was simpli�ed in the same year

by J. Franks and C. Robinson [32]. They constructed a quasi-Anosov di�eomorphism on a

three-dimensional manifold that is not Anosov. This was the �rst example of an expansive

homeomorphism on a three-dimensional manifold with wandering points.

Mañé's result for robustly expansive di�eomorphisms were generalized for continuum-wise

expansiveness by K. Sakai in 1997 [117]. The case of (Bowen-Walters) expansive C1 vector

�elds was considered by K. Moriyasu, K. Sakai and W. Sun in 2005 [88].

2.2.4 Topological dimension.

Mañé was also interested in expansive systems from a topological viewpoint. In 1979 [78] he

proved that if a compact metric space admits an expansive homeomorphism then its topological

dimension is �nite. In 1989 A. Fathi gave another proof [30] with di�erent techniques. In [78]

Mañé also showed that the only spaces admitting minimal expansive homeomorphisms are

totally disconnected, or equivalently has vanishing topological dimension. This result extends

the corresponding one in the setting of hyperbolic di�eomorphisms and �ows previously proved

by R. Bowen [18,19]. Mañé's proof was by contradiction, and assuming the existence of a non-

trivial continuum he was able to construct non-trivial connected stable sets. His techniques

were very important in the development of the theory.

In 1981 H. B. Keynes and M. Sears [67] extended these results for �ows using the de�nition

of Bowen and Walters. They proved that if a compact metric space admits an expansive �ow

then its topological dimension is �nite. If in addition it is a minimal �ow and has no spiral

orbits then the topological dimension of the space is at most one (i.e. local cross sections have

dimension zero). In the case of homeomorphisms a spiral point gives rise to a periodic point

but in the case of �ows, since the de�nition considers reparametrizations, the conclusion is not

clear. It is still an open problem of the theory.

In 1993 H. Kato [61] extended Mañé's proofs for cw-expansive homeomorphisms.

2.2.5 Lyapunov functions and stable points

In 1892, Lyapunov [76] studied the problem of stability of solutions of di�erential equations.

He developed a theory of stability and extended the notion of energy function to what now

are called Lyapunov functions. He proved that the existence of a strictly decreasing Lypunov
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function for a equilibrium point implies its asymptotic stability. In 1949 J. L. Massera [79]

proved the converse result by constructing a Lyapunov function for such points.

In 1906 [33] M. Frechet published a fundamental work in topology. For example, the concept

of metric spaces were introduced there. But we wish to mention that he considered a special

metric in the space of curves. To measure the distance between two curves he considered

the in�mum in all the reparametrizations of the sup-distance of the curves. In 1964 Massera

[80] considered the problem of stability of trajectories. He considered several variations in the

de�nition, being one of them stated using the Frechet-distance of curves.

In 1978 [26] C. Conley developed the theory of global Lyapunov functions and isolated

sets. Some authors referred to his results as the Fundamental theorem of dynamical systems.

The relationship with expansiveness is that expansiveness is equivalent with the diagonal being

isolated for the product homeomorphism. Therefore, the construction of Lyapunov functions

for isolated sets can be applied to expansive homeomorphisms.

In 1980 J. Lewowicz [72] introduced the techniques of Lyapunov functions for the study

of topological stability and expansive systems. He proved that a di�eomorphism is Anosov if

and only if there is a non-degenerate Lyapunov quadratic function in the tangent bundle. He

also considered Lyapunov functions for the problem of topological stability. Following Massera's

techniques he proved that expansiveness is equivalent with the existence of a Lyapunov function.

Such functions will be a fundamental tool in his future works on expansive homeomorphisms.

In 1990 R. Ures [127] gave another construction of a Lyapunov function for an expansive

homeomorphism. In 1993 M. Paternain [100] extended this constructions for expansive �ows

on manifolds. He also proved that expansive �ows on manifolds have no stable points in the

sense of Frechet-Massera.

2.2.6 Hyperbolic metrics.

In 1989 A. Fathi [30] was able to construct a special metric for an expansive homeomorphism

on a compact metric space. It has a hyperbolic behavior and extends previous constructions

by W. L. Reddy [109]. In [30] the hyperbolic metric is used to: 1) give a new proof of Mañé's

result, proving that if a compact metric space admits an expansive homeomorphism then its

topological dimension is �nite and 2) prove that every expansive homeomorphism de�ned on a

compact metric space with positive topological dimension has positive topological entropy. This

result was extended by Kato [61] (of course, without using hyperbolic metrics) for cw-expansive

homeomorphisms. Hyperbolic metrics can also be used to construct Lyapunov functions.
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2.3 Expansiveness on manifolds

2.3.1 Continua and hyperspace.

For hyperbolic di�eomorphisms the stable manifold theorem is a very powerful result. In this

setting one starts with a model for local stable sets: the linear stable subspaces for the tangent

map. One concludes that local stable sets are embedded manifolds. In the case of expansive

homeomorphisms on manifolds one of the main problems is to determine the topological struc-

ture of stable sets. Some results, specially in low dimensions were developed. The techniques

used for this purpose are related with continua theory, a very interesting branch of general

topology. Specially important are the results characterizing Euclidean spaces.

Recall that a continuum is a compact connected metric space. According to Charatonik

[25]2, the de�nition is due to G. Cantor [23]. Hyperspace theory has its beginning with the work

of F. Hausdor� and L. Vietoris. Given a topological space, the hyperspace is the space of all

its closed subsets equipped with the Vietoris topology. For compact metric spaces, the Vietoris

topology can be de�ned with the Hausdor� metric introduced in 1914 in his fundamental book

[45]. This metric is very important in the study of expansive homeomorphisms, for example

stable continua on Peano spaces are constructed taking limits in this distance.

The problem of disconnecting the plane by continua was studied by Z. Janiszewski. In 1913

[58] he proved that if the intersection of two planar continua neither of which disconnects the

plane is connected, then their union also does not disconnect the plane. Janiszewski's result is

applied in the study of expansive surface homeomorphisms. Essentially it allow us to think of

stable continua as if they were curves (a fact that is later proved).

Around 1913 it has been shown by S. Mazurkiewicz [82,83] and H. Hahn [42,43] that a metric

continuum is locally connected if and only if it is a continuous image of the unit closed interval.

This result reduces the problem of proving arc-connection to prove the local connection, a key

step in the study of expansive surface homeomorphisms.

In 1931 Mazurkiewicz [84] proved that the hyperspace of a space with positive dimension

has in�nite dimension. This result combined with Mañé's result on the dimension of a space

admitting an expansive homeomorphism gives us that the expansiveness in the hyperspace of

the induced homeomorphism implies that the original space has dimension zero.

In 1933 H. Whitney [135] made two contributions that we wish to remark. The �rst one is

of a topological nature. He introduced what now are called size functions. They are continuous

functions de�ned on the hyperspace that measure the size of a compact set. The main feature is

that these functions are increasing with respect to inclusions of sets. Applications in continuum

theory were found later as can be seen in Nadler's book [92]. His motivation was to parameterize

2The interested reader should consult [25], as we did, for more on the history of continuum theory.
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a regular family of curves to obtain a �ow. The second result that we wish to remark from

Whitney's paper is the construction of local cross sections for continuous �ows on metric spaces.

He gave a very simple construction, and later it was a very useful technique in the study of

expansive �ows.

2.3.2 Plane continua

A plane continua is a compact connected subset of the Euclidean plane. Those spaces can be

classi�ed according to its topological dimension and the number of components of its comple-

ment. A natural problem is to determine which plane continua admit expansive homeomor-

phisms. The �rst results in this direction were proved in 1954 [21] and 1960 [57] when Bryant,

Jacobsen and Utz proved that the interval and the circle do not admit expansive homeomor-

phisms.

The �rst example, to our best knowledge, of a plane continuum admitting an expansive

homeomorphism is the attractor introduced by Plykin in 1984 [105]. It is a one-dimensional

plane continua with four components in its complement. In 1990 Kato [59] proved that plane

Peano continua do not admit expansive homeomorphisms, generalizing the results for the in-

terval and the circle.

The result for the interval was generalized in another direction by Mouron in 2002 [89] by

proving that if a one-dimensional plane continuum does not separate the plane, then it does

not admit expansive homeomorphisms. In 2003 [90] he constructed a two-dimensional plane

continuum admitting expansive homeomorphisms. The same author in 2008 [91] extended the

result for the circle by showing that if a one-dimensional plane continuum separates the plane

in two components, then it does not admit an expansive homeomorphism.

2.3.3 Expansiveness on surfaces.

One of the �rst problems of the theory was to determine if the spheres admit expansive homeo-

morphisms. As we said, the one-dimensional case was solved in 1960 [57]. The two-dimensional

case was harder to solve. The �rst result to our best knowledge, is by P. Lam [71]. In 1970 there

it is proved that there is no orientation preserving expansive homeomorphism on the 2-sphere

with exactly one �xed point.

In 1988 K. Hiraide [50] proved that every expansive surface homeomorphism with the

pseudo-orbit tracing property is conjugate to a hyperbolic toral automorphism (a linear Anosov

di�eomorphism).

In 1989 J. Lewowicz [74] and in 1990 K. Hiraide [52] proved that the 2-sphere does not

admit expansive homeomorphisms and moreover, they showed that expansive homeomorphisms

of surfaces are pseudo-Anosov. Their proofs were based on a very nice study of the topology of
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stable sets. They were developed independently but can be divided in two parts being the �rst

one with some similarities. They �rst construct stable and unstable singular foliations. For

this they developed a topological stable manifold theorem, special for surfaces. The key point

in both works is to prove that local stable sets are locally connected in order to conclude the

arc-connection.

Then, in Lewowicz's paper it is proved that the two-dimensional sphere does not admit ex-

pansive homeomorphisms with an argument of the Poincaré-Bendixon theory of surface �ows.

In Hiraide's article it is applied an index argument. The case of surfaces of higher genus, in

Lewowicz's work is considered via universal coverings and proving that the expansive homeo-

morphism is conjugated to a pseudo-Anosov di�eomorphism. In Hiraide's paper, it is directly

constructed two invariant measures, expanding and contracting, with arguments from the in-

terval exchange maps theory.

In 1991 L. F. He and G. Z. Shan [47] showed that no surface admits expansive �ow without

singular points. Singular expansive �ows of surfaces were later studied in [5].

2.3.4 Expansive homeomorphisms on three-manifolds.

In 1989 K. Hiraide [51] proved that expansive homeomorphisms of n-tori with the pseudo-orbit

tracing property are conjugate to hyperbolic toral automorphisms.

In 1993 J. L. Vieitez [130] proved that an expansive homeomorphism of a compact three-

dimensional manifold with a dense set of topologically hyperbolic periodic points has a local

product structure de�ned on an open invariant dense subset of the manifold. In 1996 [132]

Vieitez showed, under the same hypothesis, that the manifold is a torus and the homeomorphism

is conjugate to a linear Anosov isomorphism. Generalizations of these results were given later

in [4].

In 1996 [131] J. L. Vieitez considered expansive di�eomorphisms on three-manifolds without

wandering points. Assuming also that there is a hyperbolic periodic point with a homoclinic

intersection he proved that the di�eomorphism is conjugate to an Anosov isomorphism of the

torus.

In 2002 J. L. Vieitez [133] proved that on three-dimensional manifolds there are no pseudo-

Anosov di�eomorphisms by showing that the only expansive C1+θ-di�eomorphisms on three

manifolds without wandering points are Anosov di�eomorphisms on the torus.

2.3.5 Expansive �ows on three-manifolds.

In 1990 T. Inaba and S. Matsumoto [56] and also M. Paternain [100] considered expansive

�ows on three-manifolds and extended the results of Lewowicz and Hiraide of expansive surface

homeomorphisms. They proved the existence of a stable and an unstable foliation with a �nite
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number of singular periodic orbits. In [100] Paternain also generalized a previously known

result for Anosov �ows. He proved that if a three-manifold admits an expansive �ow then its

fundamental group has exponential growth. In particular, the three dimensional sphere does

not admit expansive �ows without singular points. In this paper it is also proved that expansive

�ows on manifolds has no stable points and Lyapunov functions are constructed.

In 1993 M. Brunella [20] proved that expansive �ows on a three-manifold which is a Seifert

�bration of a torus bundle over the circle are topologically equivalent to a transitive Anosov

�ow.

2.4 Geodesic �ows and homoclinic classes

The study of homoclinic orbits and geodesic �ows can be considered as the foundation of chaotic

dynamical systems.

2.4.1 Geodesic �ows

Geodesic �ows of surfaces with negative curvature were Hadamard's motivation for introducing

symbolic dynamics and these abstract systems were the examples that Utz generalized when he

started the study of expansive homeomorphisms. Also, geodesic �ows were Anosov's motivation

for studying globally hyperbolic di�eomorphisms. Therefore, it is natural that the theory of

expansive systems turns its focus on these �ows.

In 1981 J. Lewowicz [73] studied the topological stability of the geodesic �ow of a surface

with non-positive curvature. As in Anosov's work, expansiveness is the key property. The

de�nition of expansive �ow used by Lewowicz can be found in [73, Lemma 4.1], there it is

stated using local cross sections.

In 1991 R. O. Ruggiero in [114] proved that if the geodesic �ow of a compact Riemannian

manifold is C1 persistently expansive then the closure of the set of periodic orbits is a hyperbolic

set. If the manifold is two-dimensional then the geodesic �ow is Anosov.

In 1993 M. Paternain [101] proved that expansive geodesic �ows of compact Riemannian

surfaces have no conjugate points. The proof relies on the construction of the stable foliation

of [56, 100]. It is also shown that any two expansive geodesic �ows on the same surface are

topologically equivalent.

The interested reader should consult Ruggiero's survey [115] for more on expansive geodesic

�ows.
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2.4.2 Homoclinic classes

The homoclinic class of a hyperbolic periodic point is the closure of the intersection of its stable

manifold with its unstable manifold.

In 2005 [96] M. J. Paci�co, E. R. Pujals and J. L.Vieitez considered robustly expansive

homoclinic classes of di�eomorphisms on three-dimensional manifolds. In this paper they proved

that for an open and dense subset of the space of C1 di�eomorphisms C1-robustly expansive

homoclinic classes are hyperbolic.

In 2009 M. J. Paci�co, E. R. Pujals, M. Sambarino and J. L.Vieitez [95] generalized the

result in [96] to higher dimensions. They proved that robustly expansive codimension-one

homoclinic classes are hyperbolic.

In 2008 M. J. Paci�co and J. L. Vieitez [97] considered robustly h-expansive homoclinic

classes for surface di�eomorphisms. Recall that h-expansiveness (entropy expansiveness) was

introduced by Bowen requiring that if a set has small diameter all the time then it has vanishing

topological entropy. In cited paper it is proved that robustly h-expansive homoclinic classes

have a dominated splitting, that is a weaker form of hyperbolicity. In 2010 [98] the same authors

extended the previous result for arbitrary dimension. The converse result is also studied in these

papers.

In 2013 T. Das, K. Lee and M. Lee [28] extended the previous and other problems to robustly

cw-expansive homoclinic classes.





Chapter 3

The meaning of expansiveness

The expansiveness of a homeomorphism f : X → X of a compact metric space can be de�ned

by requiring that the diagonal {(x, x) : x ∈ X} be an isolated set for f × f . Also continuum-

wise expansiveness is related with isolated sets. Since many properties of expansiveness can be

derived from results of isolated sets, let us start with this topic.

3.1 Isolated sets

Let f : X → X be a homeomorphism of a compact metric space.

De�nitions 3.1.1. A subset Λ ⊂ X is f -isolated if it is compact, invariant (f(Λ) = Λ) and

there is an open set U ⊂ X such that Λ ⊂ U and ∩n∈Zfn(closU) = Λ. In this case we

say that U is an isolating neighborhood. If Λ is an isolating neighborhood of itself we say

that Λ is topologically isolated. If ∩n≥0f
n(closU) = Λ we say that Λ is an attractor and if

∩n≤0f
n(closU) = Λ we say that Λ is a repeller.

Notice that Λ is f -isolated if and only if it is f−1-isolated. Therefore, the following results

holds for f−1 too.

Proposition 3.1.2. Let Λ be an f -isolated set with isolating neighborhood U . If for some x it

holds that fn(x) ∈ closU for all n ≥ 0 then dist(fn(x),Λ)→ 0 as n→ +∞.

Proof. By contradiction assume that there are ε > 0 and an integer sequence nk → +∞ such

that if yk = fnk(x) then dist(yk,Λ) ≥ ε for all k ≥ 1. Since yk ∈ closU and closU is compact

we can assume that yk → y ∈ closU . We have that if |j| ≤ nk then f j(yk) ∈ closU . Since

f is a homeomorphism we have that f j(y) ∈ closU for all j ∈ Z. But this is a contradiction

because dist(y,Λ) ≥ ε, in particular y /∈ Λ, and y ∈ closU .

Proposition 3.1.3. If Λ is f -isolated but not topologically isolated then there is x /∈ Λ such

that dist(fn(x),Λ)→ 0 as n→ +∞ or n→ −∞.

15
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Proof. Let U be an isolating neighborhood of Λ. By the previous proposition we have to �nd

x such that fn(x) ∈ U for all n ≥ 0 or for all n ≤ 0. Assume that for all x ∈ U there is n ≥ 0

such that fn(x) /∈ U . Since Λ is not topologically isolated there is xk → Λ with xk /∈ Λ. Then,

there is nk ≥ 0 such that f j(x) ∈ U if j = 0, 1, . . . , nk − 1 and fnk(xk) /∈ U . Suppose that

fnk−1(xk) → y ∈ clos(U). We have that y /∈ Λ and since f is a homeomorphism we have that

fn(y) ∈ clos(U) for all n ≤ 0. This �nishes the proof.

Proposition 3.1.4. Let Λ be an f -isolated set with isolating neighborhood U . Then for all

ε > 0 there is n > 0 such that if dist(x,Λ) > ε then there is j ∈ Z such that |j| ≤ n and

f j(x) /∈ U .

Proof. By contradiction suppose that there is ε > 0 such that for all n > 0 there is xn ∈ X
such that dist(xn,Λ) > ε and f j(x) ∈ U if |j| ≤ n. Eventually taking a subsequence we can

assume that xn → x. Then dist(x,Λ) ≥ ε and it is easy to see that fn(x) ∈ clos(U) for all

n ∈ Z. This contradicts that U is an isolating neighborhood of Λ.

Proposition 3.1.5. If Λ is a repeller f -isolated then for all ε > 0 there is δ > 0 such that if

dist(x,Λ) < δ then dist(f−j(x),Λ) < ε for all j ≥ 0.

Proof. By contradiction assume that there are ε > 0, a sequence xn ∈ X and jn ≥ 0 such

that dist(xn,Λ) → 0 and dist(f−jn(xn),Λ) ≥ ε. Let U be an isolating neighborhood of Λ

and consider σ ∈ (0, ε) such that Bσ(Λ) ⊂ U . Let in be such that dist(f−in(xn),Λ) ≥ σ and

dist(f−i(xn),Λ) < σ for all i = 0, 1, . . . , in − 1. Now a limit point of f−in(xn) contradicts that

Λ is a repeller.

3.2 Positive expansiveness

If the separation is required to be in positive time we have positive expansiveness.

De�nition 3.2.1. A homeomorphism f : X → X is said to be positive expansive if there exists

δ > 0 such that if dist(fn(x), fn(y)) < δ for all n ≥ 0 then x = y.

Remark 3.2.2. Consider g : X × X → X × X de�ned by g(x, y) = (f(x), f(y)). De�ne the

diagonal ∆ = {(x, x) : x ∈ X}. Notice that f is positive expansive if and only if ∆ is a repeller

g-isolated set. Therefore, applying Proposition 3.1.5, for all ε > 0 there is δ > 0 such that if

dist(x, y) ≤ δ then dist(f−n(x), f−n(y)) ≤ ε for all n ≥ 0.

This concept is interesting in the study of the dynamics of endomorphisms i.e. continuous

maps not necessarily injective. In the case of homeomorphisms we will show that the study of

positive expansive homeomorphisms is reduced to permutations on �nite sets. We follow the

proof from [27].
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Theorem 3.2.3 (Schwartzman [118]). The only compact metric spaces admitting positive ex-

pansive homeomorphisms are �nite sets.

Proof. Fix an expansive constant ε and the corresponding δ from Remark 3.2.2. Now cover X

by �nitely many open sets U1, . . . , UN with diameter smaller than ε. If X contains more then

N points, consider A ⊂ X such that |A| = N + 1. For every k ≥ 0, there are two di�erent

points xk, yk ∈ A such that fk(xk) and fk(yk) lie in the same set Unk of the covering. Then

dist(f i(xk), f
i(yk)) ≤ δ for i ≤ k. Since A × A is �nite, there exist two points x, y ∈ A such

that dist(f i(x), f i(y)) ≤ δ for in�nitely many values of i ≥ 0. By the previous argument,

dist(f i(x), f i(y)) ≤ δ for all i ≥ 0. This contradicts positive expansiveness.

This result was �rst proved in [118] and another proof can be found in [75]. In Chapter 7

we will consider positive expansive �ows. Theorem 3.2.3 means that for invertible dynamics

one has to allow the separation to occur at positive or negative times. In this way we have

expansiveness.

3.3 Expansiveness

As before, consider f : X → X a homeomorphism of a compact metric space.

De�nition 3.3.1. We say that f is expansive if there is a constant δ > 0 such that if

dist(fn(x), fn(y)) ≤ δ for all n ∈ Z then x = y. In this case we say that δ is an expan-

sive constant.

The following equivalent de�nition was used by Utz in [128]. Denote by g : X×X → X×X
the homeomorphism induced by f by g(x, y) = (f(x), f(y)).

Proposition 3.3.2. A homeomorphism f is expansive if and only if the diagonal ∆ = {(x, x) :

x ∈ X} is a g-isolated set.

Proof. It follows by the de�nitions.

Proposition 3.3.3. If δ is an expansive constant for f and dist(fn(a), fn(b)) ≤ δ for all n ≥ 0

then dist(fn(a), fn(b))→ 0 as n→ +∞.

Proof. It follows by Proposition 3.1.2.

Remark 3.3.4. In [128] Utz proved that if f : X → X is an expansive homeomorphism and

|X| = ∞ then there are two points whose orbits are asymptotic in at least one sense. It is a

consequence of Proposition 3.1.3. The next proposition is a stronger result.
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Proposition 3.3.5. If X is in�nite and f : X → X is an expansive homeomorphism then there

are a, b, c, d ∈ X such that a 6= b, c 6= d and

lim
n→+∞

dist(fn(a), fn(b)) = lim
n→−∞

dist(fn(c), fn(d)) = 0.

Proof. Let δ be an expansive constant for f . By Theorem 3.2.3 we have that f is not positive

expansive. Therefore, there are a, b ∈ X such that dist(fn(a), fn(b)) ≤ δ for all n ≥ 0. So,

we conclude by Proposition 3.3.3. To obtain the points c, d we can argue using that f−1 is not

positive expansive.

Two di�erent points a, b ∈ X are doubly-asymptotic if dist(fn(a), fn(b)) → 0 as n → +∞
and n → −∞. As we will see in Section 3.7.1 there are expansive homeomorphisms without

doubly-asymptotic points. We will also see in Section 3.7.1 that there can be trajectories

without asymptotic points.

3.3.1 Uniform expansiveness

Let δ > 0 be an expansive constant for f : X → X and consider N : X ×X → N ∪ {∞} as the
function de�ned by

N(x, y) =

{
∞ if x = y,

min {|n| : dist(fnx, fny) > δ, n ∈ Z} if x 6= y.
(3.1)

De�nition 3.3.6. A homeomorphism is uniformly expansive if for all σ > 0 there exists m > 0

such that if dist(x, y) > σ then N(x, y) ≤ m.

Proposition 3.3.7 (Bryant [22]). If X is a compact metric space then every expansive home-

omorphism is uniformly expansive.

Proof. It follows by Proposition 3.1.4.

3.4 Variations of expansiveness

3.4.1 Point-wise expansiveness

The next de�nition is associated with a variable expansive constant.

De�nition 3.4.1. A homeomorphism f is said to be pointwise expansive if for each x ∈ X

there is δ(x) > 0 such that if dist(fn(x), fn(y)) < δ(x) for all n ∈ Z then x = y.

If the function δ is continuous we have expansiveness since X is compact. In 1970 Reddy

[107] introduced this de�nition and presented an example of a pointwise expansive homeomor-

phism that is not expansive. In Example 3.4.10 below we present a variation of this example,
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showing that in fact pointwise-expansiveness does not imply cw-expansiveness (see De�nition

3.4.5).

In Section 3.7.1 we show that there are non-trivial positive pointwise-expansive homeomor-

phisms. It is a minimal system on a Cantor set.

Proposition 3.4.2 (Utz [128], Reddy [107]). Let p ∈ X be an accumulation point and assume

that p is a periodic point of the pointwise expansive homeomorphism f . Then there is x such

that dist(fn(x), fn(p))→ 0 as n→ +∞ or n→ −∞.

Proof. Pointwise expansiveness implies that periodic orbits of f are f -isolated sets. Therefore,

the result follows by Proposition 3.1.3.

De�nition 3.4.3. We say that p is a stable point if for all ε > 0 there is δ > 0 such that if

dist(x, p) < δ then dist(φt(x), φt(p)) < ε for all t ≥ 0.

Remark 3.4.4. If f is point-wise expansive and p is a stable periodic point then the orbit of p

is an attractor f -isolated set.

Some techniques of expansive homeomorphisms involving arcs or connected sets seems not

to be adaptable for point-wise expansiveness. But another weaker version of expansiveness

exist.

3.4.2 Continuum-wise expansiveness

A continuum is a compact connected metric space. Every singleton {x} is a continuum. A

continuum is non-trivial if it is not a singleton. If a homeomorphism f : X → X is expansive

and C ⊂ X is a non-trivial continuum then there is n ∈ Z such that diam(fnC) > δ if δ > 0 is

an expansive constant for f . This property is very important in the study of expansiveness.

De�nition 3.4.5. We say that f is continuum-wise expansive if there is δ > 0 such that if

C ⊂ X is a continuum such that diam(fn(C)) < δ for all n ∈ Z then C is a singleton.

In 1993 Kato in [61] introduced this de�nition, weaker than expansiveness, for which a great

number of techniques and results of expansive homeomorphisms were adapted.

Remark 3.4.6. On totally disconnected spaces, as a Cantor set, every homeomorphism is cw-

expansive. This is because there are no non-trivial continua. Therefore cw-expansiveness does

not imply point-wise expansiveness (consider for example, the identity of a Cantor set). An

example on a compact surface is presented in Section 5.3.

Let C denote the space of continua subsets of X with the Hausdor� metric. We recall the

de�nition.
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De�nition 3.4.7. If K,L are compact subsets of X then the Hausdor� distance is

distH(K,L) = inf{ε > 0 : K ⊂ Bε(L), L ⊂ Bε(K)}.

Denote by fc : C → C the homeomorphism induced by a homeomorphism f : X → X by

fc(A) = {f(x) : x ∈ A}. De�ne F1 = {{x} ∈ C : x ∈ X} the space of singletons of X. Notice

that F1 is compact and invariant under fc.

Proposition 3.4.8. A homeomorphism f is cw-expansive if and only if F1 is an fc-isolated

set.

Proof. It follows by de�nitions.

Proposition 3.4.9 (Mañé [78]). If f : X → X is a cw-expansive homeomorphism and X is not

totally disconnected there is a non-trivial continuum C such that diam(fnC)→ 0 as n→ +∞
or n→ −∞.

Proof. It is a consequence of Proposition 3.1.3.

Example 3.4.10. Let us sketch the construction of a Peano continuum admitting a pw-expansive

homeomorphism that is not cw-expansive. Let f : S → S be an expansive homeomorphism

of a two-dimensional torus (that we can consider embedded in Euclidean R3). Denote by

x1, x2, x3, . . . a sequence of periodic points of f such that if pi is the period of xi then the

sequence pi is increasing. For each f j(xi) with j = 1, . . . , pi consider a torus Sij of diameter

smaller than 1/pi such that Sij ∩ Si′j′ 6= ∅ only if i = i′ and j = j′. Moreover, assume that

S∩Sij = {f j(xi)}. Consider the space X = S∪∪Sij the union of all these tori. On X consider

a homeomorphism g such that g|S = f and g(Sij) = Si(j+1), g(Sipi) = Si1 and gpi : Sij → Sij

is an expansive homeomorphism. We have that the diameter of the tori gn(Sij) is small for all

n ∈ Z and then g is not cw-expansive. By construction it can be proved that g is pw-expansive.

3.4.3 N-expansiveness

Let us give another notion that was introduced in [87]. The cardinality of a set A will be

denoted as |A|.

De�nition 3.4.11. Given N ≥ 1, a homeomorphism is N -expansive if there is δ > 0 such that

if diam(fk(A)) < δ for all k ∈ Z then |A| ≤ N .

By de�nitions we have that expansiveness implies N -expansiveness. Also N -expansiveness

implies pw-expansiveness and cw-expansiveness. See Morales's paper [87] for more properties

of N -expansive homeomorphisms.
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3.5 Hyperbolic metric

Hyperbolic sets are known to be expansive. The converse is, in some sense, true. We mean,

every expansive homeomorphism admits a hyperbolic metric. This is the topic of the present

section. The construction is due to Fathi [30]. Let f : X → X be an expansive homeomorphism

on the compact metric space (X, dist).

De�nition 3.5.1. A metric d on X de�ning the same topology as dist is hyperbolic if there

are numbers k > 1 and δ > 0 such that

max{d(f(x), f(y)), d(f−1(x), f−1(y))} ≥ min{kd(x, y), δ}

for all x, y ∈ X. In this case we say that k is the expanding factor.

Since f and f−1 are continuous, there is σ > 0 such that

max{d(fx, fy), d(f−1x, f−1y)} < δ

if dist(x, y) < σ. So, the hyperbolicity of dist implies that if dist(x, y) < σ then dist(fx, fy) ≥
k dist(x, y) or dist(f−1x, f−1y) ≥ k dist(x, y). With a hyperbolic metric one has a nice control

of nearby points: the distance exponentially increases in one positive or negative iterate.

To show how useful a hyperbolic metric is, we o�er the following result.

Proposition 3.5.2. If dist is a (k, δ)-hyperbolic metric for f and dist(fnx, fny) < δ for all

n ≥ 0 then

dist(fx, fy) ≤ dist(x, y)

k
.

Moreover,

dist(f ix, f iy) ≤ dist(x, y)

ki

for all i ≥ 0.

Proof. Let xi = f ix and yi = f iy. By contradiction suppose that k dist(x1, y1) > dist(x0, y0).

The hyperbolicity of the metric requires that

max{dist(x2, y2), dist(x0, y0)} ≥ min{k dist(x1, y1), δ}.

Since dist(x0, y0) < δ and dist(x2, y2) < δ we have that dist(x2, y2) ≥ k dist(x1, y1). Again

max{dist(x3, y3), dist(x1, y1)} ≥ min{k dist(x2, y2), δ}.

Similar argument gives us that dist(x3, y3) ≥ k dist(x2, y2). By induction we can prove that

dist(xi+1, yi+1) ≥ k dist(xi, yi),

for all i ≥ 0. This contradicts that dist(xi, yi) < δ for all i ≥ 0.
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3.5.1 Construction of a hyperbolic metric

Let δ > 0 be an expansive constant for f . By Proposition 3.3.7 there is m such that if

dist(x, y) > δ/2 then max|n|≤m dist(fnx, fny) > δ. Let α > 1 be such that αm ≤ 2. Recall that

the function N was de�ned as

N(x, y) =

{
∞ if x = y,

min {|n| : dist(fnx, fny) > δ, n ∈ Z} if x 6= y.
(3.2)

and de�ne ρ : X ×X → R by

ρ(x, y) = α−N(x,y).

We will show that ρ is a quasi-metric. So applying Proposition A.1 we have the metric D

associated to ρ. Choose n0 such that K = (αn0/4) > 1. Let k = K1/n0 . We de�ne another

metric d by

d(x, y) = max
|i|≤n0−1

D(f i(x), f i(y))

k|i|
. (3.3)

We will show that d is a hyperbolic metric for the expansive homeomorphism f .

To show that ρ is a quasi-metric we need some Lemmas.

Lemma 3.5.3. If

max
|i|≤n−1

ρ(f i(x), f i(y)) ≤ 1

α

then

max{ρ(fn(x), fn(y)), ρ(f−n(x), f−n(y))} ≥ αnρ(x, y). (3.4)

Proof. Notice that the hypothesis means N(x, y) ≥ n and the thesis is equivalent to

N(x, y) ≥ n+ min{N(f−n(x), f−n(y)), N(fn(x), fn(y))}.

So it is trivial.

Lemma 3.5.4. For all x, y, z ∈ X it holds that

min{N(z, y), N(z, x)} ≤ m+N(x, y).

Proof. This follows from the triangular inequality for the metric dist and the de�nition of m.

The idea is: when the iterates of x and y are at a distance greater then δ then z can not be at

a distance less than δ/2 from x and y.

Proposition 3.5.5. The function ρ is a quasi-metric de�ning the topology of dist.

Proof. The �rst three items (of the de�nition of quasi-metric) follows by de�nitions. To prove

the last one recall that αm ≤ 2 and the previous Lemma.

The quasi-metric ρ de�nes the topology of dist, because f is an expansive homeomorphisms.
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From (3.4) and (A.10), we have that if

max
|i|≤n−1

D(f i(x), f i(y)) ≤ 1

4α

then

max{D(fn(x), fn(y)), D(f−n(x), f−n(y))} ≥ αn

4
D(x, y). (3.5)

Theorem 3.5.6 (Fathi [30]). Expansive homeomorphisms on compact metric spaces admit

hyperbolic metrics.

Proof. By direct inspection, it is easy to establish the following inequality:

max{d(f(x), f(y)), d(f−1(x), f−1(y))} ≥ max
0<|i|≤n0

D(f i(x), f i(y))

k|i|−1
.

Now this last quantity is the maximum of the following two quantities A and B:

A = max
0<|i|<n0

D(f i(x), f i(y))

k|i|−1
= k max

0<|i|<n0

D(f i(x), f i(y))

k|i|
, (3.6)

and

B =
max{D(fn0(x), fn0(y)), D(f−n0(x), f−n0(y))}

kn0
.

Suppose now that d(x, y) < 1
4αkn0−1 . Then by (3.5), (3.3) and the de�nition of k, we get:

B ≥ kD(x, y). (3.7)

It is easy to conclude from (3.6) and (3.7) that if d(x, y) ≥ 1/4αkn0−1 then

max{d(f(x), f(y)), d(f−1(x), f−1(y))} ≥ kd(x, y). (3.8)

Since X is compact, we can �nd δ > 0 such that if d(x, y) ≥ 1/4αkn0−1 then

max{d(f(x), f(y)), d(f−1(x), f−1(y))} ≥ δ. (3.9)

From (3.8) and (3.9), we have

max{d(f(x), f(y)), d(f−1(x), f−1(y))} ≥ min{kd(x, y), δ}.

for all x, y ∈ X.



24 3.6. LYAPUNOV FUNCTIONS

3.6 Lyapunov functions

As we have explained in the previous section, expansiveness is equivalent with the existence

of a hyperbolic metric. Another characterization can be obtained using Lyapunov functions.

This idea is due to Lewowicz. In this section we develop the technique of Lyapunov functions

for expansive systems from a di�erent viewpoint from Lewowicz's one. Our method is based

on isolated sets for �ows in the sense of Conley.

In Dynamical Systems and Di�erential Equations it is important to determine the stability

of trajectories and a well known technique for this purpose is to �nd a Lyapunov function. In

order to �x ideas consider a continuous �ow φ : R×X → X on a compact metric space (X, dist)

with a singular (or equilibrium) point p ∈ X, i.e., φt(p) = p for all t ∈ R. A Lyapunov function

for p is a continuous non-negative function that vanishes only at p and strictly decreases along

the orbits close to p.

De�nition 3.6.1. We say that p is asymptotically stable if it is stable and there is δ0 > 0 such

that if dist(x, p) < δ0 then φt(x)→ p as t→ +∞.

The existence of a Lyapunov function for an equilibrium point implies the asymptotic sta-

bility of the equilibrium point.

A remarkable result, �rst proved by Massera in [79], is the converse: every asymptotically

stable singular point admits a Lyapunov function of class C1. Later, other authors obtained

Lyapunov functions with di�erent methods, see for example [14,26]. In [55] a generalization is

proved in the context of arbitrary metric spaces. The purpose of this section is to develop a

new technique that allows us to construct Lyapunov functions for di�erent dynamical systems

as: isolated sets, expansive homeomorphisms and continuum-wise expansive homeomorphisms.

Our techniques are based on the size function µ introduced by Whitney in [135].

In order to give a motivation let us show how to construct a Lyapunov function for an

asymptotically stable singular point. As before, denote by K the hyper-space of non-empty

compact subsets of X with the Hausdor� distance.

De�nition 3.6.2. A size function is a continuous function µ : K→ R satisfying:

1. µ(A) ≥ 0 with equality if and only if A has only one point,

2. if A ⊂ B and A 6= B then µ(A) < µ(B).

In [135] it is proved that size functions exists for every compact metric space.

Theorem 3.6.3 (Massera [79]). If φ is a continuous �ow on X with an asymptotically stable

singular point p then there are an open set U containing p and a continuous function V : U → R
satisfying:

1. V (x) ≥ 0 for all x ∈ U with equality if and only if x = p and
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2. if t > 0 and {φs(x) : s ∈ [0, t]} ⊂ U then V (φt(x)) < V (x).

Proof. By the conditions on p there are δ0, δ > 0 such that if dist(x, p) < δ then φt(x) ∈ Bδ0(p)

for all t ≥ 0 and φt(x)→ p as t→∞. De�ne U = Bδ(p) and V : U → R as

V (x) = µ({φt(x) : t ≥ 0} ∪ {p})

where µ is a size function. Since φt(x)→ p we have that

O(x) = {φt(x) : t ≥ 0} ∪ {p} (3.10)

is a compact set for all x ∈ U . Notice that if t > 0 then O(φt(x)) ⊂ O(x) and the inclusion is

proper. Therefore, V (φt(x)) < V (x) because µ is a size function. Also notice that V (p) = 0

and V (x) > 0 if x 6= p. In order to prove the continuity of V , we will prove the continuity

of O : U → K(X), the map de�ned by (3.10). Since µ is continuous we will conclude the

continuity of V .

Let us prove the continuity of O at x ∈ U . Take ε > 0. By the asymptotic stability of p

there are ρ, T > 0 such that if y ∈ Bρ(x) then φt(y) ∈ Bε/2(p) for all t ≥ T . By the continuity

of the �ow, there is r > 0 such that if y ∈ Br(x) then dist(φt(x), φt(y)) < ε for all t ∈ [0, T ].

Now it is easy to see that if y ∈ Bmin{ρ,r}(x) then distH(O(x), O(y)) < ε, proving the continuity

of O at x and consequently the continuity of V .

Let us recall that size functions can be easily de�ned. A variation of the construction given

in [135], adapted for compact metric spaces, is the following. Let q1, q2, q3, . . . be a sequence

dense in X. De�ne µi : K→ R as

µi(A) = max
x∈A

dist(qi, x)−min
x∈A

dist(qi, x).

The following formula de�nes a size function µ : K→ R

µ(A) =
∞∑
i=1

µi(A)

2i
,

as proved in [135]. In Section 3.6.2 we extend Theorem 3.6.3 by constructing a Lyapunov

function for an isolated invariant sets.

For the study of expansive homeomorphisms Lewowicz introduced in [72] Lyapunov func-

tions. He proved that expansiveness is equivalent with the existence of such function. In Section

3.6.3 we give a di�erent proof of this result by constructing a Lyapunov function de�ned for

compact subsets of the space. With our techniques we prove that continuum-wise expansiveness

is equivalent with the existence of a Lyapunov function on continua subsets of the space.

Let us start explaining how to construct a Lyapunov function in X ×X using a hyperbolic

metric.
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3.6.1 Lyapunov functions via hyperbolic metrics

In [75] a quadratic form is constructed for an Anosov di�eomorphism. In this section we will

use the technique of [75] to construct a Lyapunov function from a hyperbolic metric.

A Lyapunov function for a homeomorphisms f : X → X is a continuous map V : N → R
de�ned on a compact neighborhood of the diagonal on X × X, such that V (x, x) = 0 for all

x ∈ X and

∆V (x, y) = V (fx, fy)− V (x, y) > 0

if x 6= y and x, y, fx, fy ∈ N .

Theorem 3.6.4 (Lewowicz [72]). A homeomorphism of a compact metric space is expansive if

and only if it admits a Lyapunov function.

Proof. Converse. Let α > 0 be such that if dist(x, y) < α then (x, y) ∈ N . We will show that

α is an expansive constant. Suppose that dist(fnx, fny) < α for all n ∈ Z. If V (x, y) > 0 then

V (fnx, fny) > V (x, y) for all n > 0. Then there is ρ > 0 such that dist(fnx, fny) > ρ for all

n ≥ 0 because V is continuous and vanishes on the diagonal. We have that

min{∆V (x, y) : dist(x, y) ≥ ρ} = µ

is positive since N is compact. So

V (fnx, fny) = V (x, y) +
n−1∑
i=0

∆V (f ix, f iy) ≥ V (x, y) + (n− 1)µ,

which is a contradiction because V is bounded. If V (x, y) < 0 we get the same contradiction

considering f−1. If V (x, y) = 0 and x 6= y then V (fx, fy) > 0 and we can repeat the argument

with fx and fy. We have proved that x = y.

Direct. Now we assume that f is expansive. We consider a (k, δ)-hyperbolic metric dist. If

km > 2 then there is σ > 0 such that if 0 < dist(x, y) ≤ σ then

max{dist(fmx, fmy), dist(f−mx, f−my)} > 2 dist(x, y). (3.11)

Let N = {(x, y) ∈ X ×X : dist(x, y) ≤ σ} and de�ne V : N → R as

V (x, y) =
m−1∑
i=0

dist(fm+ix, fm+iy)−
m−1∑
i=0

dist(f ix, f iy).

Notice that

∆V (x, y) = dist(f 2mx, f 2my)− 2 dist(fmx, fmy) + dist(x, y).

So, applying (3.11) we have that ∆V (x, y) > 0 if x 6= y.
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3.6.2 Lyapunov Functions for Isolated Sets

In this section we consider continuous �ows on compact metric spaces. The purpose is to

construct a Lyapunov for an isolated set of the �ow using a size function. First we consider the

case of an isolated set consisting of a point.

Isolated Singularities Let φ be a continuous �ow on a compact metric space (X, dist). A

point p ∈ X is singular for φ if φt(p) = p for all t ∈ R. A singular point p ∈ X is isolated if

there is an open isolating neighborhood U of p such that if φR(x) ⊂ U then x = p.

De�nition 3.6.5. An open set U is an adapted neighborhood of an isolated singular point

p ∈ U if for every orbit segment l ⊂ clos(U) with extreme points in U it holds that l ⊂ U .

Given a set A ⊂ X and x ∈ A denote by compx(A) the connected component of A that

contains the point x.

Proposition 3.6.6. Every isolated singular point has an adapted neighborhood.

Proof. Let r > 0 be such that clos(Br(p)) ⊂ N . For ρ ∈ (0, r) de�ne the set

Uρ = {x ∈ Br(p) : compx(φR(x) ∩Br(p)) ∩Bρ(p) 6= ∅}.

By the continuity of φ we have that Uρ is an open set for all ρ ∈ (0, r). Let us prove that if ρ

is su�ciently small then Uρ is an adapted neighborhood. By contradiction, suppose that there

are ρn → 0, an, bn ∈ Uρn , tn ≥ 0 such that bn = φtn(an) and ln = φ[0,tn](an) ⊂ clos(Uρn) but ln

is not contained in Uρn .

If ln ⊂ Br(p) then ln would be contained in Uρn . Since we know that this is not the case

there is sn ∈ (0, tn) such that cn = φsn(an) ∈ ∂Br(p). Since an, bn ∈ Uρn we know that

compan(φR(an) ∩ Br(p)) ∩ Bρ(p) 6= ∅ and compbn(φR(bn) ∩ Br(p)) ∩ Bρ(p) 6= ∅. Then, there

must be un < 0 and vn > 0 such that φun(cn), φvn(cn) ∈ Bρn(p) with φ[un,vn](cn) ⊂ clos(Br(p),

un → −∞ and vn → +∞. If c is a limit point of cn we have that φR(c) ⊂ Br(p) and c 6= p.

This contradicts that clos(Br(p)) is contained in an insolating neighborhood of p and proves

the result.

Fix an isolated point p with an adapted neighborhood U . Consider the sets

W s
U(p) = {x ∈ U : lim

t→+∞
φt(x) = p and φR+(x) ⊂ U},

W u
U(p) = {x ∈ U : lim

t→−∞
φt(x) = p and φR−(x) ⊂ U},

.

For x ∈ U de�ne the orbit segments

O+
U (x) = compx(U ∩ φ[0,+∞)(x)),

O−U (x) = compx(U ∩ φ(−∞,0](x)).
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De�ne C = X \ U and let V +
p , V

−
p : U → K be de�ned as{

V +
p (x) = clos(O+

U (x) ∪W u
U(p)) ∪ C,

V −p (x) = clos(O−U (x) ∪W s
U(p)) ∪ C.

De�nition 3.6.7. A Lyapunov function for an isolated point p is a continuous function V : U →
R de�ned in a neighborhood of p such that if t > 0 and φ[0,t](x) ⊂ U \{p} then V (x) > V (φt(x)).

The following is a well known result, see for example [26]. The proof via size functions

seems to be a new one.

Theorem 3.6.8. If p is an isolated point and U is an adapted neighborhood of p then the maps

V +
p and V −p are continuous in U . If in addition, µ is a size function on K then V : U → R

de�ned as

V (x) = µ(V +
p (x))− µ(V −p (x))

is a Lyapunov function for p.

Proof. Let us prove the continuity of V +
p by contradiction. Assume that xn → x ∈ U and

V +
p (xn)→ K with the Hausdor� distance but K 6= V +

p (x). By de�nitions we have that

clos(W u
U(p)) ∪ C ⊂ K ∩ V +

p (x). (3.12)

Recall that C was de�ned as the complement of U inX. Take a point y ∈ K\V +
p (x)∪V +

p (x)\K.

By the inclusion (3.12) we know that y /∈ clos(W u
U(p)) ∪ C. We divide the proof in two cases.

Case 1. Suppose �rst that y ∈ K \V +
U (x). Since y ∈ K there is a sequence tn ≥ 0 such that

φtn(xn)→ y and φ[0,tn](xn) ⊂ U . If tn →∞ then x ∈ W s
U(p). Consequently, y ∈ W u

U(p), which

is a contradiction. Therefore tn is bounded. Without loss of generality assume that tn → τ ≥ 0

and then φτ (x) = y. Thus φ[0,τ ](x) ⊂ clos(U). Since y /∈ C we have that y ∈ U . Now, since

U is an adapted neighborhood we conclude that φ[0,τ ](x) ⊂ U and then y ∈ O+(x) ⊂ V +
p (x).

This contradiction �nishes this case.

Case 2. Now assume that y ∈ V +
p (x) \ K. In this case we have that y = φs(x) for some

s ≥ 0 and φ[0,s](x) ⊂ U . Then φs(xn) → y and y ∈ K. This contradiction proves that V +
p is

continuous in U .

The continuity of V −p is proved in a similar way. Let us show that V is a Lyapunov function

for p. The continuity of V in U follows by the continuity of V +
p , V −p and the size function µ.

Now take x /∈ U \ {p}. We will show that V decreases along the orbit segment of x

contained in U . Notice that for all t > 0, O+
U (φt(x)) ⊂ O+

U (x) if φ[0,t](x) ⊂ U . Therefore

V +
p (φt(x)) ≤ V +

p (O+(x)). The equality can only hold if x ∈ W u
U(p). But in this case we

have that x /∈ W s
U(p) because W u

U(p) ∩W s
U(p) = {p}. Then V −p (φt(x)) > V −p (x). Therefore,

V (φt(x)) < V (x) and V is a Lyapunov function for p.
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Isolated Sets Let φ : R × X → X be a continuous �ow on a compact metric space X.

Consider a φ-invariant set Λ ⊂ X, i.e., φt(Λ) = Λ for all t ∈ R. We say that Λ is an isolated

set with isolating neighborhood U if φR(x) ⊂ U implies x ∈ Λ.

De�nition 3.6.9. A Lyapunov function for an isolated set Λ is a continuous function V : U → R
de�ned on an open set U containing Λ such that:

1. V (x) = 0 if x ∈ Λ,

2. if φ[0,t](x) ⊂ U \ Λ then V (x) > V (φt(x)).

Let us show how the construction of a Lyapunov function for an isolated set can be reduced

to the case of an isolated singular point.

Theorem 3.6.10. Every isolated set admits a Lyapunov function.

Proof. Consider the set Y = (X \ Λ) ∪ {Λ}. On Y de�ne the distance d as

d(x, y) = min{dist(x, y), dist(x,Λ) + dist(y,Λ)}.

It is easy to see that (Y, d) is a compact metric space. Also, the �ow φ induces naturally a

�ow φ′ on Y with Λ as an isolated singular point. Consider from Theorem 3.6.8 a Lyapunov

function for Λ as an isolated singular point of φ′. This function naturally de�nes a Lyapunov

function for Λ as an isolated set of φ.

3.6.3 Applications to expansive homeomorphisms

Let f : X → X be a homeomorphism of a compact metric space (X, dist).

Theorem 3.6.11. Every isolated set Λ of a homeomorphism f admits a Lyapunov function,

that is, a continuous map V : U ⊂ X → R de�ned on a neighborhood of Λ such that:

1. V (x) = 0 if x ∈ Λ,

2. V (x) > V (f(x)) if x, f(x) ∈ U \ Λ.

Proof. Consider φ : R×Xf → Xf the suspension of f . Consider i : X → Xf a homeomorphism

onto its image such that i(X) is a global cross section of φ. It is easy to see that Λ is an isolated

set for f if and only Λf = φR(i(Λ)) is an isolated set for φ. Now consider a Lyapunov function

V ′ for Λf . A Lyapunov function for f can be de�ned by V (x) = V ′(i(x)).

Recall that K denotes the compact metric space of compact subsets of X with the Hausdor�

metric. Denote by F1 = {A ∈ K : |A| = 1} where |A| denotes the cardinality of A. Given a

homeomorphism f : X → X de�ne the homeomorphism f ′ : K→ K as f ′(A) = {f(x) : x ∈ A}.
Notice that F1 is invariant under f ′.
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Corollary 3.6.12. For a homeomorphism f : X → X the following statements are equivalent:

1. f is an expansive homeomorphism,

2. F1 is an isolated set for f ′,

3. there is a continuous function V : U ⊂ K → R de�ned on a neighborhood of F1 such that

V (A) = 0 if and only if A ∈ F1 and V (A) > V (f ′(A)) if A, f ′(A) ∈ U \ F1.

Proof. (1→ 2). Let δ be an expansive constant and de�ne

U = {A ∈ K : diam(A) < δ}.

It is easy to see that U is an isolating neighborhood of F1.

(2→ 3). It follows by Theorem 3.6.11.

(3 → 1). Take δ > 0 such that if dist(x, y) ≤ δ then {x, y} ∈ U . Let us prove that δ is an
expansive constant for f . Assume by contradiction that dist(fn(x), fn(y)) ≤ δ for all n ∈ Z
and x 6= y. De�ne A = {x, y}. We have that V (f ′n(A)) is a decreasing sequence. Without loss

of generality assume that V (A) < 0. Suppose that f ′n(A) accumulates in B. Now it is easy to

see that B ∈ U \ F1 and also V (B) = V (f ′(B)). This contradiction proves the theorem.

Recall that a continuum is a compact connected set. Denote by C(X) = {C ∈ K :

C is connected} the space of continua of X.

Corollary 3.6.13. For a homeomorphism f : X → X the following statements are equivalent:

1. f is a continuum-wise expansive homeomorphism,

2. F1 is an isolated set for f ′ : C(X)→ C(X),

3. there is a continuous function V : U ⊂ C(X) → R de�ned on an open set U ⊂ C(X)

containing F1 such that V (A) = 0 if A ∈ F1 and V (A) > V (f ′(A)) if A, f ′(A) ∈ U \ F1.

Proof. The proof is similar to the proof of Corollary 3.6.12.

3.7 Examples

We have developed several techniques to prove expansiveness. They will be applied in the

following examples.

3.7.1 The shift map

The shift map is an abstract dynamical system. It is de�ned on a symbolic space. De�ne

Ij = {0, 1, 2, . . . , j − 1} and consider

Σj = {a : Z→ Ij}.
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An element of Σj is a sequence of elements in Ij. The value a(n) for n ∈ Z is denoted as an.

Consider the function N : Σj → Z ∪ {∞} de�ned as

N(a, b) =

{
∞ if a = b,

min {|n| : an 6= bn, n ∈ Z} if a 6= b.
(3.13)

Note the relationship between this function and the one de�ned in Eq. (3.1) (related with

uniform expansiveness and the construction of a hyperbolic metric). In Σj we consider the

metric

dist(a, b) = λ−N(a,b)

for λ > 1. It is known that (Σj, dist) is a compact metric space homeomorphic to the Cantor

set. The shift map is σ : Σj → Σj de�ned as (σ(a))n = an−1. It is easy to see that f is a

homeomorphisms. Moreover, it is an expansive one, with expansive constant δ = 1/2. In fact λ

is an expanding factor of the metric, so dist is a hyperbolic metric. A subshift is the restriction

of the shift to a compact invariant subset of Σj. Of course, subshifts are expansive too. As we

will see in Theorem 4.1.12 (a result from [65]) every expansive homeomorphism can be covered

with a subshift.

The hyperbolicity of the subshifts was used by Walters in [134] to obtain the structural

stability (in a special sense) of some subshifts. See the reference for more details.

Sturmian subshifts

Let β ∈ (0, 1) be an irrational number. In Σ2 consider the sequence a de�ned as

an =

{
0 if nβ − k ∈ [0, β) for some k ∈ Z,
1 otherwise,

for all n ∈ Z. Consider Ω as the closure of the orbit of a by the shift map. By de�nition

f = σ|Ω is a subshift and it is called as a Sturmian subshift. It is an exercise to check that it

is minimal. Note that a0 = 0 and a1 = 1. Consider nj, kj ∈ Z satisfying njβ − kj → 1−. Let

b = limj→∞ f
nj(a). Note that b0 = 1, b1 = 1 and bn = an if n /∈ {0, 1}. Therefore we have that

dist(fn(a), fn(b)) → 0 as n → ±∞. This is the doubly asymptotic pair found by Hedlund in

[49]. It can also be proved that if dist(fn(c), fn(d))→ 0 as n→ +∞ or n→ −∞, with c 6= d,

then {c, d} = {fn(a), fn(b)} for some n ∈ Z. This implies that Sturmian subshifts are positive

and negative 2-expansive.

These subshifts are conjugate with the non-wandering set of Denjoy's counterexamples.
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Interval exchange subshifts

Consider 0 < α < β < 1 and de�ne r : I = [0, 1)→ I as

r(x) =


x+ 1− α if x ∈ [0, α),

x− α + 1− β if x ∈ [α, β),

x− β if x ∈ [β, 1).

It is an interval exchange map and is illustrated in Figure 3.1. It is known that if α, β are

1

α

1− α

β

β

1

1−

Figure 3.1: An interval exchange map.

rationally independent then r is minimal. See, for example [129] for a proof and more on the

minimal interval exchange maps. De�ne the sequence on three symbols a ∈ Σ3 as

an =


0 if rn(0) ∈ [0, α),

1 if rn(0) ∈ [α, β),

2 if rn(0) ∈ [β, 1).

As for Sturmian subshifts, de�ne Ω as the closure of the orbit of a by the shift map of Σ3 and

consider f = σ|Ω. The properties of f that we wish to remark are: 1) there are no doubly

asymptotic pairs of points and 2) there are no x, y, z ∈ Ω such that x, y are positive asymptotic

and y, z are negative asymptotic. Of course, f is expansive.

3.7.2 Quasi-hyperbolic sets

The following exposition follows [75]. Let f : M → M be a C1 di�eomorphism of a compact

smooth Riemannian manifold M . Suppose that K ⊂ M is a compact f -invariant set, i.e.

f(K) = K.

De�nition 3.7.1. We say that K is a quasi-hyperbolic set if for all v ∈ TKM the set {‖dfnv‖ :

n ∈ Z} is bounded only if v = 0.
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For example Anosov di�eomorphisms, quasi-Anosov di�eomorphisms and hyperbolic sets

are quasi-hyperbolic. We will show that quasi-hyperbolicity implies expansiveness. Assume

that K ⊂M is a quasi-hyperbolic set for f .

Lemma 3.7.2 (Lewowicz [72]). There is m ≥ 0 such that max{‖dfmu‖, ‖df−mu‖} > 2‖u‖ for
all u 6= 0, u ∈ TKM .

Proof. Since SKM = {v ∈ TKM : ‖v‖ = 1} is compact there is N > 0 such that for all

u ∈ SKM , there is n such that ‖dfnu‖ > 2 and |n| ≤ N . Therefore, for all u ∈ TKM , u 6= 0, it

holds that ‖dfnu‖ > 2‖u‖ for some n with |n| ≤ N . Let l > 0 such that ‖dfnu‖ ≥ l‖u‖ for all
u ∈ TKM with u 6= 0 and |n| ≤ N . Take j > 0 such that 2jl > 2. We will show that m = jN

satis�es the thesis of the Lemma.

For uo ∈ TKM , u0 6= 0, take n0 such that |n0| ≤ N and ‖dfn0u0‖ ≥ ‖dfku0‖ if |k| ≤ N . It

implies that ‖dfn0u0‖ > 2‖u0‖. We will show that if n0 is positive then ‖dfmu0‖ > 2‖u0‖. In
the same way it could be proved that if n0 is negative then ‖df−mu0‖ > 2‖u0‖. So, suppose

that n0 > 0. Let u1 = dfn0u0 and applying the previous remarks we �nd n1 such that |n1| ≤ N ,

‖dfn1u1‖ ≥ ‖dfku1‖ if |k| ≤ N and ‖dfn1u1‖ > 2‖u1‖. Notice that n1 must be positive.

Therefore ‖fn0+n1u0‖ > 22‖u0‖. By induction we �nd a sequence nν , ν = 0, 1, 2, . . . such that

0 < nν ≤ N and

‖df
∑k−1
ν=0 nνu0‖ > 2k‖u0‖.

Take k ≥ j such that
∑k−1

ν=0 nν ≤ m <
∑k

ν=0 nν . Then

‖dfmu0‖ ≥ 2kl‖u0‖ ≥ 2jl‖u0‖ ≥ 2‖u0‖

as we wanted to prove.

Now consider the quadratic form B : TKM → R de�ned as

B(u) =
m−1∑
i=0

‖dfm+iu‖2 −
m−1∑
i=0

‖df iu‖2

Proposition 3.7.3. For all u ∈ TKM , u 6= 0, it holds that

B(dfu)−B(u) > 0.

Proof. Note that

B(dfu)−B(u) = ‖df 2mu‖2 − 2‖dfmu‖+ ‖u‖2.

Therefore, the proposition follows by Lemma 3.7.2.
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Now take r > 0 such that for all p ∈ K the exponential map expp restricted to the r ball

in TpM is a di�eomorphism onto its image. Take δ0 > 0 such that Bδ0(p) ⊂ expp(T
r
p ) for all

p ∈ K, where

T rp = {u ∈ TpM : ‖u‖ ≤ r}.

Let Nδ = {(p, q) ∈ K ×K : dist(p, q) ≤ δ} and de�ne V : Nδ → R, for δ ∈ (0, δ0), as

V (x, y) = B(exp−1
x (y)).

Proposition 3.7.4. If δ is small enough then V is a Lyapunov function on Nδ. Therefore,

quasi-hyperbolic sets are expansive.

Proof. De�ne B′ : TKM → R as B′(u) = B(dfu) − B(u). It is a positive quadratic form by

Proposition 3.7.3. Therefore, there is γ > 0 such that for all u 6= 0 it holds that

B′(u)

‖u‖2
> γ.

Consider f̃x = exp−1
fx ◦f ◦ expx de�ned for small vectors in the tangent space at x. We have

that dxf = d0f̃ if we identify TxM with T0TxM . Therefore, if r(u) = dfu− f̃u then

r(u)

‖u‖
→ 0

as u→ 0. We want to prove that B(f̃u)−B(u) > 0. So

B(f̃u)−B(u)

‖u‖2
=
B(f̃u)−B(dfu)

‖u‖2
+
B′(u)

‖u‖2
.

Recall that B′(u)/‖u‖2 > γ > 0 for all u 6= 0, therefore it is enough to show that

B(f̃u)−B(dfu)

‖u‖2
→ 0 (3.14)

as u→ 0. Let w be a symmetric bilinear form such that B(v) = w(v, v). Then

B(f̃u)−B(dfu)

‖u‖2
=
w(dfu+ r(u), dfu+ r(u))− w(dfu, dfu)

‖u‖2

= 2w

(
dfu

‖u‖
,
r(u)

‖u‖

)
− w

(
r(u)

‖u‖
,
r(u)

‖u‖

)
Since dfu/‖u‖ is bounded and r(u)/‖u‖ → 0 we have proved (3.14). So, δ must be chosen in

such a way that if dist(x, y) < δ then

B(f̃u)−B(dfu)

‖u‖2
< γ

if u = exp−1
x y. We have proved that V is a Lyapunov function. Now applying Theorem 3.6.4

we conclude that quasi-hyperbolic sets are expansive.
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A di�eomorphism is quasi-Anosov if M is a quasi-hyperbolic set. Mañé in [77] proved

that a di�eomorphism is robustly expansive in the C1 topology if and only if it is quasi-

Anosov. A di�eomorphism is robustly expansive if it is in the interior of the set of expansive

C1 di�eomorphisms with the C1 topology.

3.7.3 Pseudo-Anosov di�eomorphisms

Let S be a compact topological surface without boundary. A �at structure is a �nite family

of homeomorphisms onto its images φα : D = [0, 1] × [0, 1] → S, α ∈ A, such that S =

∪α∈Aφ(D), for all x ∈ S, and the change of coordinates are local isometries preserving vertical

and horizontal lines in D.

The vertical and the horizontal foliations of D induce two foliations on S that may have

singular points. Also a �at Riemannian metric is induced away from the singularities. A pseudo-

Anosov homeomorphism of S is a homeomorphism f : S → S that preserves both foliations

and

• Len(f−1(γs)) = λLen(γs) for every vertical arc of leaf γs and

• Len(f(γu)) = λLen(γu) for every horizontal arc of leaf γu,

where λ > 1 is a �xed parameter.

Proposition 3.7.5. If f is pseudo-Anosov then the distance induced by the �at Riemannian

metric is hyperbolic. Consequently, pseudo-Anosov homeomorphisms are expansive.

Proof. It follows by the hyperbolic behavior of vertical and horizontal leaves.

Let us give another related example that is not expansive but it is cw-expansive. Consider

the torus T 2 = R2/Z2 and f : T 2 → T 2 be de�ned as f(x, y) = (2x+y, x+y) for all (x, y) ∈ T 2.

It is a linear Anosov di�eomorphism. If we identify p ' −p we obtain a sphere S = T 2/ '.
From the de�nitions it is easy to check that f induces a map g on S as g([p]) = [f(p)], where

[ ] denotes the equivalence class. We have that g is not expansive, in fact we will see that there

are no expansive homeomorphisms on the sphere. It is interesting because it is cw-expansive.





Chapter 4

Variations of expansiveness

4.1 Stability and Dimension

4.1.1 Positive continuum-wise expansiveness

De�nition 4.1.1. We say that f is positive continuum-wise expansive if there is δ > 0 such

that if diam(fn(C)) ≤ δ for all n ≥ 0 for some continuum C then C is a singleton. In this case

we say that δ is a positive cw-expansive constant.

The solenoid is an example of a positive continuum-wise expansive homeomorphism. We

will show that if f is positive cw-expansive and X is locally connected then X is a �nite set.

In spite that this result is not stated in [75], our exposition follows the ideas therein.

Theorem 4.1.2. If f is positive cw-expansive and X is locally connected then X is a �nite set.

Proof. Note that positive cw-expansiveness implies that the space of singletons is a repeller

isolated set for the action of f on continua subsets of X. Therefore, by Propositions 3.1.2 and

3.1.5, there is δ0 such that if diam(C) < δ0 for a continuum C ⊂ X, then diam(fn(C)) → 0

as n → −∞. For each x ∈ X take a continuum Cx such that x is in the interior of Cx and

diam(Cx) ≤ δ0. Since X is compact and the interiors of Cx cover X there are di�erent points

x1, . . . xn ∈ X such that X = ∪ni=1Cn where Cn = Cxn . We known that diam(f−j(Ci)) → 0 as

j →∞. Also, since f is a homeomorphism, we know that f−j(C1), . . . , f−j(Cn) cover X. This

easily implies that X has at most n points.

4.1.2 Lyapunov stability

In this section assume that X is a Peano continuum (compact, connected and locally connected

metric space). Also, consider f : X → X a continuum-wise expansive homeomorphism. We

will show that with this hypothesis there are no Lyapunov stable points.

37
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Proposition 4.1.3 (Kato [61]). If f is cw-expansive then for all ε > 0 there is δ > 0 such

that if C ⊂ X is a continuum, diam(C) ≤ δ and diam(fnC) ≥ ε for some n > 0 then

diam(fm(C)) ≥ δ for all m > n.

Proof. We will argue by contradiction. Then there is a cw-expansive constant ε > 0, a positive

sequence δk → 0, a sequence of continua Ck ⊂ X and integer sequences mk > nk > 0 such

that diam(Ck) ≤ δk, diam(fnk(Ck)) ≥ ε, diam(fmk(Ck)) ≤ δk. In this case we have that

nk → +∞ and mk − nk → +∞. Eventually taking a subcontinuum of Ck we can also assume

that diam(f j(Ck)) ≤ ε for all j = 0, 1, 2, . . . ,mk. Now, a limit continuum, in the Hausdor�

metric, of the sequence fnk(Ck) contradicts that ε is a cw-expansive constant.

Remark 4.1.4. This property of cw-expansive homeomorphisms suggests to de�ne: f is super

expansive if there is δ > 0 such that if dist(x, y) ∈ (0, δ) then there is n ∈ Z such that if n > 0

then for all m ≥ n it holds that dist(fm(x), fm(y)) > δ and if n < 0 then there is m ≤ n such

that dist(fm(x), fm(y)) > δ. Super expansiveness implies expansiveness and also that there are

no doubly asymptotic points. What else can be said about such homeomorphisms?

Remark 4.1.5. A well known result in continuum theory states that every Peano continuum

admits a metric, called convex metric, for which every ball is connected. See [92] for more on

this topic.

Theorem 4.1.6 (Lewowicz, Hiraide, Kato). Non-trivial Peano spaces admit no cw-expansive

homeomorphisms with stable points.

Proof. Arguing by contradiction assume that x ∈ X is a stable point of the cw-expansive

homeomorphism f : X → X of the non-trivial Peano continuum X. By Remark 4.1.5 we

will assume that every ball is connected. Let α > 0 be a cw-expansive constant of f . Take

ε ∈ (0, α). Since x is a stable point we know that there is δ > 0 such that if dist(y, x) < δ then

dist(fn(y), fn(x)) < ε for all n ≥ 0.

In this paragraph we will show that there is σ ∈ (0, δ) such that

fn(Bσ(f−n(x))) ⊂ Bδ(x),∀n ≥ 1. (4.1)

By contradiction assume that this is not the case. Then, for σ = 1/k, k ≥ 1, there is nk

such that fnk(B1/k(f
−nk(x))) is not contained in Bδ(x). In this case, it is easy to see that

nk → +∞ as k → +∞. Also, we can take a continuum Ck ⊂ B1/k(f
−nk(x)) such that

f−nk(x) ∈ Ck, diam(f i(Ck)) ≤ δ for all i = 1, . . . , nk and for some ik ∈ {1, . . . , nk} the equality
diam(f ik(Ck)) = δ holds. Since x is stable, we know that diam(f j(Bδ(x)) ≤ ε < α for all j ≥ 0,

where α is a cw-expansive constant. If we de�ne Dk = f ik(Ck) we have that Dk is a continuum,

diam(Dk) = δ and diam(f j(Dk)) ≤ ε for all j ≥ −nk. Then, taking a limit continuum of Dk,

in the Hausdor� metric, we contradict that f is cw-expansive with expansive constant α.
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We have that (4.1) implies that every point in the set α(x) is stable. Let z ∈ α(x). Since

z is stable, it is easy to see that x ∈ ω(z). We also have by the stability of z and the fact

that z ∈ α(x) that ω(x) = ω(z). Then x ∈ ω(x), i.e., x is a recurrent point. Since x is

stable, X is locally connected and f is cw-expansive we have that x is in fact asymptotically

stable. Therefore, there are r > 0 small and m ≥ 0 such that fm(Br(x)) ⊂ Br(x). Since

diam(f i(Br(x)))→ 0 as i→ +∞, we have that ∩i≥0f
im(Br(x)) is a singleton {y}. In particular

fm(y) = y, y is stable and y ∈ ω(x). If x is not in the orbit of y we have a contradiction because

x is recurrent and y ∈ ω(x) with y a stable point. This proves that x is a periodic point.

Therefore, we have proved that every stable point is periodic. This is a contradiction because

the set of stable points is an open set. This contradiction proves the Theorem.

4.1.3 Stable sets

In this section we study basic topological properties of stable and unstable sets of cw-expansive

homeomorphisms. Let f : X → X be a cw-expansive homeomorphisms.

De�nition 4.1.7. A continuum C is stable if diam(fk(C)) ≤ ε for all k ≥ 0 with ε a cw-

expansive constant. If f is cw-expansive and C is a stable continuum then diam(fk(C))→ 0.

Proposition 4.1.8. If f : X → X is cw-expansive and X is a Peano continuum then there is

δ > 0 such that for all x ∈ X there is a stable continuum C containing x with diameter δ.

Proof. Given a cw-expansive constant ε consider δ from Proposition 4.1.3. For x ∈ X consider

z ∈ ω(x) and take a compact connected neighborhood U of z such that diam(U) ≤ δ. Take

nk →∞ such that fnkx ∈ U . By Theorem 4.1.6 we have that z is not stable for f−1. So there

is N > 0 such that diam(f−N(U)) > ε. Suppose that nk > N for all k. Consider Ck ⊂ U

such that Ck is a continuum, fnk(x) ∈ Ck, diam(f−j(Ck) ≤ ε for all j = 0, 1, . . . , nk and

for some of this values of j, say jk, the equality holds. By Proposition 4.1.3 we know that

diam(f−n(Ck) ≥ δ for all n ≥ jk. Note that x ∈ f−nk(Ck). Then a limit continuum of f−nk(Ck)

satis�es the thesis.

I learned the following argument from Lewowicz.

Corollary 4.1.9 (Kawamura [64]). If X is a Peano continuum admitting a cw-expansive home-

omorphism then no open subset of X is homeomorphic with R. In particular, the circle, the

interval and surfaces with non-empty boundary do not admit cw-expansive homeomorphisms.

Proof. Suppose by contradiction that there is an open subset U homeomorphic to R. By

Proposition 4.1.8 for x ∈ U there is a stable continuum C of positive diameter. Since U is

homeomorphic to R we have that C has non-empty interior. The points in the interior of C

are stable points, but this contradicts Theorem 4.1.6.
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The cases of the circle and the interval follows easily. If X is a surface with boundary,

the boundary is a f -invariant union of circles. And f should be expansive restricted to the

boundary, a contradiction.

We say that C ⊂ X separates if X \C is not connected. The following proof works on every

Peano continuum with the following property: every point has arbitrary small neighborhoods

with connected boundary. For example if X is a manifold of dimension greater than 1. Accord-

ing to the previous result, one dimensional manifolds need not to be consider. The next result

is very important in the study of surface homeomorphisms.

Proposition 4.1.10. If f : X → X is cw-expansive and X is a connected manifold then no

stable set separates X.

Proof. Consider a cw-expansive constant δ ∈ (0, diam(X)/2). By contradiction suppose there

is a stable set C such that Y = X \ C is not connected. Let U be a �nite cover of X such

that diamU < δ and ∂U is connected for all U ∈ U . Since δ < diamX/2 we have that

diam(X \ U) > δ for all U ∈ U . If γ ∈ (0, δ) is a Lebesgue number for U we can suppose that

diam fn(C) < γ for all n ≥ 0 (eventually changing C for fnC for some n ≥ 0 if needed). So,

for all n ≥ 0 there is U ∈ U such that fn(C) ⊂ U . Since X is locally connected and Y is an

open set we have that the connected components of Y are open sets. For each n ≥ 0 consider

Un ∈ U such that fnC ⊂ Un. Since ∂Un is connected and disjoint with fnC we have that ∂Un

is contained in one connected component of fnY . Let Yn be the connected component of fnY

that contains ∂Un. Since δ < diamX/2 and diamUn < δ we have that diamX \ Un > δ, so,

diamYn > δ for all n ≥ 0.

We will show that there is n0 such that if m ≥ n ≥ n0 we have that Ym = fm−nYn. If this

were not the case there is some Yk such that for some n1 < 0 < n2 we have that f
n1Yk ⊂ Uk−n1

and fn2Yk ⊂ Uk+n2 . So, f
n1Yk contradicts Proposition 4.1.3.

Therefore there is a connected component of Y , say Y ′, such that for all n ≥ n0 it holds

that fnY ′ ⊂ Un. Then diam fn(Y ′) < δ for all n ≥ n0 and the points of Y ′ are stable. This

contradicts Proposition 4.1.6.

4.1.4 Coverings

A covering is a �nite family of open sets U = {Ui ⊂ X : i = 1, . . . n} such that ∪ni=1Ui = X.

De�ne

‖U‖ = sup
U∈U

diamU.

A sequence of coverings Un is co�nal if ‖Un‖ → 0 as n → ∞. A covering U is a generator for

f if for every bisequence {An}n∈Z of members of U we have that

∩n∈Zfn(clos(An))
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is at most one point. A weak generator is de�ned in the same way, but requiring that

∩n∈Zfn(An)

is at most one point.

The de�nition of generators were introduced by Keynes and Robertson [65], we are following

the exposition of [3] page 37.

Theorem 4.1.11. The following statements are equivalent:

1. f is expansive,

2. f has a generator and

3. f has a weak generator.

Proof. (1 → 2) Let δ > 0 be an expansive constant for f and let U be a �nite covering such

that ‖U‖ < δ. Suppose that x, y ∈ ∩n∈Zfn(clos(An)) for some bisequence An ∈ U . Then

dist(fnx, fny) ≤ δ for all n ∈ Z and expansiveness implies that x = y.

(2→ 3) Is trivial.

(3 → 1) Suppose that U is a weak generator. Let δ > 0 be a Lebesgue number for U . If

dist(fnx, fny) < δ for all n ∈ Z then for each n ∈ Z there is An ∈ U such that f−nx, f−ny ∈ An.
So, x, y ∈ ∩n∈Zfn(An) which is at most one point. Therefore x = y and f is expansive.

Theorem 4.1.12 (Keynes and Robertson [65]). If f : X → X is an expansive homeomorphism

then there is a subshift σ′ : Y → Y and a continuous surjective map π : Y → X such that

π ◦ σ = f ◦ π.

Proof. Consider a generator U = {A0, . . . , Ad−1}. Let σ : Σ→ Σ be the shift on d symbols and

de�ne

Y = {m ∈ Σ : ∩i∈Zf−i(clos(Ami)) 6= ∅}.

We will show that Y is closed. Let mj be a sequence in Y such that mj → m ∈ Σ. Denote by

yj the only point in ∩i∈Zf−i(closAmji
). Eventually taking a subsequence we can assume that

yj → y ∈ X. Let ji ≥ 0 be such that mj
i = mi for j ≥ ji. Thus yj ∈ f−i(clos(Ami) for all j ≥ ji

and y ∈ f−i(clos(Ami)). Hence ∩i∈Zf−i(clos(Ami)) 6= ∅ and m ∈ Y .
Clearly Y is invariant by the shift σ, since if ∩i∈Zf−i(clos(Ami)) 6= ∅, then

∩i∈Zf−i+1(clos(Ami)) = ∩i∈Zf−i(clos(Ami+1
)) = ∩i∈Zf−i(clos(Aσ(m)i)),

and σ(m) ∈ Y . De�ne π : Y → X by

π(m) = ∩i∈Zf−i+1(clos(Ami)).
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Then
πσ(m) = ∩i∈Zf−i(clos(Aσ(m)i)) = ∩i∈Zf−i(clos(Ami+1

))

= f(∩i∈Zf−i(clos(Ami))) = fπ(m).

for all m ∈ Y . Since U is a cover, π is clearly onto. The continuity of π follows by our previous

arguments.

4.1.5 Finite dimension

Let f : X → X be a cw-expansive homeomorphism of a compact metric space.

De�nition 4.1.13. We say that the topological dimension of X is �nite if there is n ∈ N such

that for all r > 0 there is an open covering U of X such that:

• diam(U) < r for all U ∈ U and

• every point of X belongs to at most n+ 1 open sets of U .

In this case we say that dimtop(X) ≤ n.

In this section we will show that the topological dimension of X is �nite, if X admits a

cw-expansive homeomorphism f : X → X. Mañé in [78] gave a proof for expansive homeomor-

phisms. In [61] Kato proved the result for cw-expansive homeomorphisms. His proof uses some

basic topological results that we explain in detail here.

Let c > 0 be a cw-expansive constant for f . By Proposition 4.1.3 we know that there is

δ > 0 such that:

if C is a continuum, diam(C) ≤ δ and diam(fn(C)) ≥ c for some n > 0

then diam(fm(C)) ≥ δ for all m > n.
(4.2)

Take a �nite covering {U1, . . . , Ul} of X by open sets such that diam(Ui) < δ. We will show

that dimtop(X) is at most l2 − 1, where l is the number of elements of the covering. For n ≥ 0

and i, j = 1, . . . , l de�ne the open set

Un
i,j = fnUi ∩ f−nUj.

Proposition 4.1.14. For all σ > 0 there is n0 > 0 such that if n ≥ n0 and C is a connected

component of the closure of some Un
i,j then diam(C) < σ.

Proof. By contradiction assume that there is σ > 0, nk → ∞ and Ck a component of Unk
ik,jk

such that diam(Ck) ≥ σ. Let N > 0 be such that if diam(C) ≥ σ for some continuum

C ⊂ X then sup|j|≤N diam(f j(C)) > c. Since fnk(Ck) ⊂ clos(Ujk), f
−nk(Ck) ⊂ clos(Uik) and

diam(Uik), diam(Ujk) < δ we have a contradiction with condition (4.2) taking nk > N .

The following lemmas are topological, no dynamic is involved.
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Lemma 4.1.15. If Y ⊂ X is a compact subset, C ⊂ Y is a connected component of Y and U is

an open subset containing C then there is an open set V such that C ⊂ V ⊂ U and Y ∩∂V = ∅.

Proof. Given a component C ⊂ Y consider an open set U containing C. For ε > 0 consider Aε

the set of points a ∈ Y for which there is a �nite sequence x1, . . . , xn ∈ Y such that x1 ∈ C,
xn = a and dist(xi, xi+1) ≤ ε. Let us show that if ε is su�ciently small then Aε ⊂ U . If this

is not true, then for all ε = 1/k there is a chain xk1, x
k
2, . . . , x

k
nk

such that xk1 ∈ C, xknk /∈ U

and dist(xki , x
k
i+1) < 1/k. Let Lk = {xk1, xk2, . . . , xknk} and assume that Lk → L in the Hausdor�

metric. It is easy to see that L is a continuum contained in Y that intersects C and the

complement of U . Therefore, L ⊂ C, and we have a contradiction with C ⊂ U . Then there is ε

such that Aε ⊂ U . Finally, we can de�ne V = U ∩Bε(Aε) and it is easy to see that V satis�es

the thesis of the proposition.

An open covering is a disjoint covering if every pair of its members are disjoint.

Lemma 4.1.16. If Y ⊂ X is compact and every component of Y has diameter smaller than

σ > 0 then there is a disjoint covering of Y whose members have diameter smaller than σ.

Proof. Given x ∈ Y consider Cx the component of x in Y . Let r > 0 be so that Br(Cx)

has diameter smaller than σ. From the previous lemma consider an open set Vx such that

Cx ⊂ Vx ⊂ Br(Cx) and ∂Vx ∩ Y = ∅. Since Y is compact there are x1, . . . , xn such that the

corresponding Vi = Vxi form an open covering of Y . Since ∂Vi∩Y = ∅ we have that Yi = Y ∩Vi
is a compact set. De�ne Ui = {y ∈ Vi : dist(y, Yi) < (dist(y, Yj) if i 6= j}. In this way Ui∩Uj = ∅
if i 6= j and the proof ends.

Theorem 4.1.17 (Mañé [78], Kato [61]). If X admits a cw-expansive homeomorphism then

the topological dimension of X is �nite.

Proof. Given σ > 0 consider n0 from Proposition 4.1.14. Take n ≥ n0. By the previous lemma

we have that each Un
i,j admits a disjoint covering Un

i,j = ∪k=K(i,j,n)
k=1 Un,k

i,j with diam(Un,k
i,j ) < σ.

Let

U = {Un,k
i,j : i, j = 1, . . . , l; k = 1, . . . , K(i, j, n)}.

We will show that every point of X belongs to at most l2 sets of the covering U . Suppose that⋂
m=1,...,s

Un,km
im.jm

6= ∅.

By construction, if (im1 , jm1) = (im2 , jm2) then

U
n,km1
im1 .jm1

= U
n,km2
im2 .jm2

.

Therefore s ≤ l2 and the proof ends.
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Corollary 4.1.18. If X admits an expansive homeomorphism then X is homeomorphic to a

compact subset of an Euclidean space Rm for some m ≥ 1.

Proof. It is known that if dimtop(X) ≤ n then X is homeomorphic to a compact subset of

R2n+1, see Theorem V2 in [54].

4.1.6 Minimal sets

A compact metric space X has local dimension 0 at a point x ∈ X if it has arbitrary small

neighborhoods with empty boundary. The space X has dimension 0 if it has dimension 0 at

every x ∈ X. It is easy to see that X has dimension 0 if and only if it is totally disconnected,

i.e. every connected set in X is a singleton. The purpose now is to prove that if X admits a

minimal cw-expansive homeomorphism then X has dimension 0.

Let c > 0 be a cw-expansive constant of f . We say that a continuum C is r-stable if for all

n ≥ 0 it holds that diam(fn(C)) ≤ r.

Lemma 4.1.19. There exists m ∈ N such that if Λ ⊂ X is a c-stable continuum with diam(Λ) =

c/3 then there are c-stable continua Λ1,Λ2 ⊂ f−m(Λ) satisfying:

1. diam(Λ1) = diam(Λ2) = c/3,

2. inf{dist(z, w) : z ∈ Λ1, w ∈ Λ2} ≥ c/3,

Proof. Take m such that if Λ is a c-stable continuum and diam(Λ) = c/3 then diam(f−mΛ) > c.

Such value of m exists by Proposition 3.1.4. Then we can �nd points a, b ∈ f−m(Λ) such that

dist(a, b) = c. Take Λ1,Λ2 ⊂ f−m(Λ) such that a ∈ Λ1, b ∈ Λ2 and diam(Λ1) = diam(Λ2) = c/3.

Let us explain how to take Λ1. Since f
−m(Λ) is a continuum, there is a function g : [0, 1]→ K

that is continuous with respect to the Hausdor� metric on K, g(0) = {a}, g(1) = f−m(Λ) and

a ∈ g(t) is a subcontinuum of f−m(Λ) for all t ∈ [0, 1]. This is a well known result in continuum

theory and a proof can be found in [92]. Since diam: K→ R is continuous, there is t0 ∈ (0, 1)

such that diam(g(t0)) = c/3. De�ne Λ1 = g(t0). A similar procedure gives us Λ2. If there are

z ∈ Λ1 and w ∈ Λ2 such that dist(z, w) < c/3 then

dist(a, b) ≤ dist(a, z) + dist(z, w) + dist(w, b) < c/3 + c/3 + c/3.

This constradicts that dist(a, b) = c and �nishes that proof.

Remark 4.1.20. Recall that we have proved in Proposition 3.4.9 that if X is not totally dis-

connected, i.e. dim(X) > 0, then there is a c-stable continuum Λ for f or for f−1. Without

loss of generality we will assume that Λ is c-stable for f . Taking a negative iterate of Λ, and

eventually a sub-continuum of Λ, we can also assume that diam(Λ) = c/3.
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Let U be an open set with diam(U) < c/3. De�ne C0 = Λ given by Remark 4.1.20. Take

Λ1 and Λ2 from the previous lemma. Then, either Λ1 or Λ2 does not intersect U . Suppose

Λ1 ∩ U = ∅. De�ne C1 = Λ1. Now consider Λ′ = C1 and apply the lemma, obtaining again Λ′1

and Λ′2. Similarly, Λ′1 or Λ′2 does not intersect U . Suppose Λ′2 ∩ U = ∅ and de�ne C2 = Λ′2.

Using this method we �nd C1, C2, . . . such that Cj+1 ⊂ f−m(Cj) and Cj ∩ U = ∅ for all j ≥ 1.

Take x ∈ ∩j≥0f
jm(Cj). Then, f

−jm(x) /∈ U for all j ≥ 1.

We have proved:

Proposition 4.1.21. If f is cw-expansive, Λ is a c-stable continuum, diam(Λ) = c/3 and U

is an open set with diam(U) < c/3 (with c a cw-expansive constant) then is x ∈ Λ such that

f−jm(x) /∈ U for all j ≥ 1, where m is given by the lemma.

Theorem 4.1.22 (Mañé [78], Kato [61]). If f : X → X is a minimal cw-expansive homeomor-

phism then the topological dimension of X is 0.

Proof. Assume by contradiction that dim(X) > 0. Then, we can apply Remark 4.1.20 to obtain

a c-stable continuum Λ of diameter c/3. By the previous proposition we know that fm is not

minimal. But, since f is minimal, it is known that X is a disjoint union of X1, . . . , Xm compact

subsets of X and fm : Xi → Xi is minimal for all i = 1, . . . ,m. Since Λ is connected and the

sets Xi form a partition of X of closed sets we have that Λ must be contained in some Xi, say

Λ ⊂ X1. If we take U contained in X1, we arrive to a contradiction with Proposition 4.1.21

because fm : X1 → X1 is minimal.

Corollary 4.1.23. Every minimal cw-expansive homeomorphism is conjugate with a subshift.

Proof. It is a consequence of Theorem 4.1.22 and the techniques in the proof of Theorem

4.1.12.

4.2 Hyper-expansiveness

The purpose of the present section is to study the expansiveness of the induced map f∗ on

compact subsets. Let f : X → X be a homeomorphism of a compact metric space and consider

K as the hyper-space of X, i.e., the compact metric space with the Hausdor� metric. De�ne

C(X) = {Y ∈ K : Y is connected } as the subspace of continua subset of X. Denote by

f∗ : K→ K the homeomorphism induced by f on the compact subsets of X with the Hausdor�

metric. The induced action on continua will be denoted as fc : C(X)→ C(X). Note that fc is

a restriction of f∗.

We consider the four possibilities shown in Table (4.3). The implications of the table are
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easy to prove.

f∗ is expansive ⇒ f∗ is cw-expansive

⇓ ⇓
fc is expansive ⇒ fc is cw-expansive.

(4.3)

Remark 4.2.1. If fc is cw-expansive then dim(X) ≤ 2. This is because, by Theorem 4.1.17 we

known that dim(C(X)) < ∞. And it is known that if dim(X) ≥ 3 then dim(C(X)) = ∞ (see

[92] Theorem 2.3 and Theorem 2.5 for some results in the case dim(X) = 2).

Proposition 4.2.2. It holds that f∗ is cw-expansive if and only if dim(X) = 0.

Proof. If dim(X) = 0 then dim(K) = 0. Therefore, f∗ : K→ K is cw-expansive. Conversely, if

f∗ is cw-expansive then dim(K) is �nite. By [92] Theorem 1.95, we have that dim(X) = 0.

De�nition 4.2.3. A homeomorphism f : X → X on a compact metric space is hyper-expansive

if f∗ is expansive, that is, there is δ > 0 such that if distH(fn∗ (A), fn∗ (B)) < δ for all n ∈ Z,
with A and B compact subsets of X, then A = B.

Notice that hyper-expansiveness is a stronger condition than expansiveness.

Remark 4.2.4. We have seen in Theorem 4.1.17 that if a compact metric space admits a cw-

expansive homeomorphism then its topological dimension is �nite. It is known that if dimtopX >

0 then dimtopK =∞ (this fact was �rst proved in [84], see also [92] Theorem 1.95). Hence, if

f∗ is cw-expansive then dimtopX = 0.

It is known that expansiveness does not imply hyper-expansiveness. Indeed, in [13] it is

noticed that the shift map is not hyper-expansive. This can be deduced from the fact that

the shift map has in�nitely many periodic points. Those remarks on hyper-expansiveness were

rediscovered in [93] (Proposition 2.23 and Example 2.24). We will give a simple characterization

of hyper-expansiveness in Theorem 4.2.10. We need some de�nitions and previous results.

De�nition 4.2.5. Let us denote

• Ωf the set of non-wandering points, i.e., x ∈ Ωf if for all ε > 0 there is n > 0 such that

fn(Bεx) ∩Bεx 6= ∅,
• Perr the set of repeller periodic points and Pera the set of attracting periodic points.

Remark 4.2.6. It is easy to see that every expansive homeomorphism has a �nite number of

�xed points. Also, every compact f -invariant set K ⊂ X (i.e., f(K) = K) is a �xed point of f∗.

So, if f is hyper-expansive then f has a �nite number of compact invariant sets (in particular,

it has �nitely many periodic points).

Lemma 4.2.7. If f : X → X is hyper-expansive and K ⊂ X is minimal then K is �nite (i.e.,

a periodic orbit).
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Proof. Minimality implies that for all ε > 0 there is n ≥ 0 such that for all x ∈ X the set

Onx = {x, fx, . . . , fnx} is ε-dense in K (i.e., for all y ∈ K there is j ∈ {0, 1, . . . , n} such that

dist(y, f jx) < ε). Therefore, f j(Onx) is ε-dense for all j ∈ Z because f j(Onx) = On(f jx). If ε

is an expansive constant for f∗ then distH(f j(Onx), f j(K)) < ε for all j ∈ Z. Then K = Onx

and K is �nite.

Remark 4.2.8. In the previous proof the expansiveness was contradicted with two sets K1 ⊂ K2.

Notice that distH(A,B) ≥ distH(A,B ∪A), so f is hyper-expansive if and only if there is δ > 0

such that if A ⊂ B, A,B ∈ K and distH(fn∗ A, f
n
∗ B) < δ for all n ∈ Z then A = B.

We have that if f is hyper-expansive then f has a �nite number of periodic points. Eventu-

ally taking a power of f we can suppose that every periodic point is a �xed point. Recall that

if a homeomorphism is expansive then its non-trivial powers are expansive too.

Lemma 4.2.9. If f is hyper-expansive then every �xed point of f is an attractor or a repeller.

Proof. By contradiction suppose that p is a �xed point of f that is neither attractor nor repeller.

Since p is not an attractor, p is not stable (Remark 3.4.4). So, there is ε > 0 and a sequence

xn such that xn → p as n → ∞ and for some kn > 0, fkn(xn) /∈ Bε(p). Suppose that for all

k < kn, f
k(xn) ∈ Bε(p). Assume that an = fkn−1(xn) converges to a ∈ closBε(p). It is easy to

see that f j(a)→ p as j → −∞ and a 6= p.

Similarly, using that p is not unstable, one can prove that there is b 6= p such that

f j(b) → p as j → +∞. Let δ > 0 be an expansive constant for f∗. Take n0 ≥ 0 such

that fm(b), f−m(a) ∈ Bδ(p) for all m ≥ n0. Let A = {fn(b), f−n(a)} and B = A ∪ {p}. So,

A 6= B and distH(fnA, fnB) < δ for all n ∈ Z. That contradicts the expansiveness of f∗.

Theorem 4.2.10. A homeomorphism f : X → X is hyper-expansive if and only if f has a

�nite number of orbits and Ωf = Perr ∪ Pera.

Proof. Direct. Suppose that f is hyper-expansive. We have proved that there is a �nite number

of periodic points. So, eventually taking a power of f we can suppose that every periodic point

is in fact a �xed point. If there are only �xed points, there is nothing to prove (X is �nite).

So, suppose that x ∈ X is not a �xed point. Consider the ω-limit set ω(x). It is a compact

invariant set, therefore it contains a minimal set, say K. We have proved that every minimal

set is a periodic orbit, so, it is a �xed point K = {p}. It is easy to see that ω(x) = {p},
since p must be an attractor. In particular x is a wandering point. Then, we have proved that

Ω(f) = Pera ∪ Perr.
Now we will prove that there is a �nite number of orbits. It is easy to see that for all ε > 0

there is N ≥ 0 such that if x /∈ Bε(Ω(f)) then f jx, fkx ∈ Bε(Ω(f)) if j ≤ −N and k ≥ N .

If f has an in�nite number of orbits and ε > 0 is smaller than an expansive constant for f∗,

then X \Bε(Ω(f)) is a compact in�nite set. So, there are x, y /∈ Bε(Ω(f)) and p, q ∈ Ω(f) such
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that ω(x) = ω(y) = {p} and α(x) = α(y) = {q}. Then, if dist(x, y) is small, this two points

contradicts the expansiveness of f (and hyper-expansiveness too). This contradiction proves

that there is a �nite number of orbits.

Converse. Again, eventually taking a power of f , we can assume that every periodic point of

f is a �xed point. Let δ1 > 0 be such that ∩n≥0f
n(Bδ1(Pera)) = Pera and ∩n≤0f

n(Bδ1(Perr)) =

Perr. Take x1, . . . , xn one point of each wandering orbit of f . Let δ2 > 0 be such that Bδ2(xi) =

{xi} for all i = 1, . . . , n. We will show that δ = min{δ1, δ2} is an expansive constant for f∗.

Let A,B be two compact sets such that distH(fnA, fnB) < δ for all n ∈ Z. If there is a

wandering point x such that x ∈ A \ B then there is k ∈ Z and i ∈ {1, . . . , n} such that

fkx = xi. So, distH(fkA, fkB) > δ2. This contradiction proves that the wandering points of

A and B coincide. If A 6= B then there is a �xed point p ∈ A \ B (similarly for p ∈ B \ A).
Without loss of generality suppose that p is a repeller. Since p /∈ B then there is ε > 0 such

that Bε(p) ∩B = ∅. Take n such that Bδ1(p) ∩ fnB = ∅. Since p ∈ fnA for all n ∈ Z, we have
that distH(fnA, fnB) > δ1, which is a contradiction. So f is hyper-expansive.

As we said, an important problem is to determine what spaces admit expansive home-

omorphisms. In [63] this problem is solved for countable compact spaces. Now we give a

characterization of compact spaces admitting hyper-expansive homeomorphisms.

A simple consequence of the previous result is that if X admits a hyper-expansive homeo-

morphism then X is countable. As we will see, the converse is not true. Let

Iso(X) = {x ∈ X : there is ε > 0 such that Bε(x) ∩X = {x}}

and

Lim(X) = X \ Iso(X).

The cardinality of a set A is denoted as |A|.

Theorem 4.2.11. A compact metric space X admits a hyper-expansive homeomorphism if and

only if 2 ≤ |Lim(X)| <∞ or Lim(X) = ∅ (i.e., X is �nite).

Proof. By Theorem 4.2.10 we have that Lim(X) ⊂ Ω(f) that is because wandering points must

be isolated. So, Lim(X) is �nite. If X is in�nite, there must be at least one attractor and one

repeller, so Lim(X) ≥ 2.

In order to prove the converse notice that if the set of limit points is �nite then X is

countable. Consider an in�nite countable space X (the �nite case is trivial). Since every in�nite

continuum is uncountable, we have that dimtop(X) = 0. It is known that if dimtop(X) ≤ n then

X is homeomorphic to a compact subset of R2n+1, see Theorem V2 in [54]. So, without loss of

generality, we can assume that X ⊂ R. Let p1 < · · · < pn ∈ X, n ≥ 2, be the limit points of

X. We can also suppose that X ⊂ [p1, pn] and for all ε > 0 we have that
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• X ∩ (pj, pj + ε) 6= ∅ for all j = 1, . . . , n− 1 and

• X ∩ (pj − ε, pj) 6= ∅ for all j = 2, . . . , n

De�ne Ij = X ∩ (pj, pj+1) for j = 1 . . . , n− 1. Now we de�ne f : X → X as follows:

• f(pj) = pj for all j = 1, . . . , n,

• if x ∈ Ij and j is odd then f(x) is the �rst point of X at the right of x and

• if x ∈ Ij and j is even then f(x) is the �rst point of X at the left of x.

In this way pj is a repeller �xed point if j is odd and it is an attractor if j is even. So, by

Theorem 4.2.10 we have that f is hyper-expansive.

Since hyper-expansiveness is a very strong condition, we have that most homeomorphisms

satisfy the following result.

Corollary 4.2.12. If f : X → X is a homeomorphism of a compact metric space X and

|Lim(X)| =∞ then for all ε > 0 there are two di�erent compact sets A,B ⊂ X such that

distH(fnA, fnB) < ε, for all n ∈ Z.

It is a simple consequence of our previous result. It holds for example if X is a manifold of

positive dimension, a non-trivial connected space or a Cantor set.

Let us now give some examples and remarks.

Example 4.2.13. Let X = {0}∪{1/n : n ∈ N} ⊂ R. Since X has just one limit point we have

that X does not admit hyper-expansive homeomorphisms, but it is easy to see that it admits an

expansive one.

Countable compact spaces admitting expansive homeomorphisms can be characterized as

follows. Recall that Limλ+1(X) = Lim(Limλ(X)), Lim1(X) = Lim(X) and

Limλ(X) =
⋂
α<λ

Limα(X)

for every limit ordinal number λ. The limit degree of X is the ordinal number d(X) = λ if

Limλ(X) 6= ∅ and Limλ+1(X) = ∅. In [63] (Theorem 2.2) it is shown that a countable compact

space X admits an expansive homeomorphism if and only if d(X) is not a limit ordinal number.

Remark 4.2.14. Applying Theorem 4.2.11 we have that X admits a hyper-expansive homeo-

morphism if and only if d(X) ≤ 1 and |Lim(X)| 6= 1.

It seems to be of interest to provide an example of a countable compact space do not

admitting expansive homeomorphisms.
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Example 4.2.15. Given A ⊂ R we say that (a, b) ∈ A×A is an adjacent pair if there are no

points of A in the open interval (a, b). The set of adjacent pairs is denoted as

Adj(A) = {(a, b) ∈ A× A : a < b, (a, b) ∩ A = ∅}.

Let A0 = {0} ∪ {1/n : n ∈ N} and

An+1 = An ∪
⋃

(a,b)∈Adj(An∩[0,1/n])

{a+ (b− a)/m : m ∈ N}.

De�ne X = ∪∞n=0An. It is easy to see that it is a compact set and it is countable by construction.

Notice that d(X) is the �rst in�nite ordinal number and therefore it is a limit ordinal number.

To see that it does not admit an expansive homeomorphism notice that if f : X → X is a home-

omorphism then Limλ(X) is an f -invariant set for all ordinal number λ. Now notice that for all

ε > 0 there is a �nite ordinal number λ such that Limλ(X) ⊂ [0, ε] and Limλ(X) is an in�nite

set. Therefore, every pair of di�erent points x, y ∈ Limλ(X) contradict the ε-expansiveness of

f . Since ε is arbitrary we have that X does not admit expansive homeomorphisms.

4.3 Observable cardinality

As we saw, there are several variations of the de�nition of expansive homeomorphism. Some

variations of this de�nition are weaker, as for example continuum-wise expansiveness and N -

expansiveness (recall De�nitions 3.4.5 and 3.4.11). Other variations of expansiveness can be

found in [18, 85,107]. A branch of research in topological dynamics investigates the possibility

of extending known results for expansive homeomorphisms to these versions. See for example

[86,97,112,117]. In Chapter 5 we will consider N -expansive homeomorphisms of surfaces.

Other related de�nitions are stronger than expansiveness as for example positive expansive-

ness and hyper-expansiveness (recall De�nitions 3.2.1 and 4.2.3). Both de�nitions are so strong

that their examples are almost trivial. Recall Theorems 3.2.3 and 4.2.10.

These results give us general results about the dynamic of most homeomorphisms. We have

that if the compact metric spaceX is not a �nite set, then for every homeomorphism f : X → X

and for all δ > 0 there are x 6= y such that dist(fk(x), fk(y)) < δ for all k ≥ 0. This is a very

general result about the dynamics of homeomorphisms of compact metric spaces. We also

have that no uncountable compact metric space admits a hyper-expansive homeomorphism.

Therefore, if X is an uncountable compact metric space, as for example a compact manifold,

then for every homeomorphism f : X → X and for all δ > 0 there are two compact subsets

A,B ⊂ X, A 6= B, such that distH(fk(A), fk(B)) < δ for all k ∈ Z. Recall the Hausdor�

distance in De�nition 3.4.7.

According to Lewowicz [75] we can explain the meaning of expansiveness as follows. Let us

say that a δ-observer is someone that cannot distinguish two points if their distance is smaller
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than δ. If dist(x, y) < δ a δ-observer will not be able to say that the set A = {x, y} has two
points. But if the homeomorphism is expansive, with expansive constant greater than δ, and

if the δ-observer knows all of the iterates fk(A) with k ∈ Z, then he will �nd that A contains

two di�erent points, because if dist(fk(x), fk(y)) > δ then he will see two points in fk(A). Let

us be more precise.

De�nition 4.3.1. For δ ≥ 0, a set A ⊂ X is δ-separated if for all x 6= y, x, y ∈ A, it holds that
dist(x, y) > δ. The δ-cardinality of a set A is

|A|δ = sup{|B| : B ⊂ A and B is δ-separated},

where |B| denotes the cardinality of the set B.

Notice that the δ-cardinality is always �nite because X is compact. The δ-cardinality of

a set represents the maximum number of di�erent points that a δ-observer can identify in the

set.

In this section we introduce a series of de�nitions, some weaker and other stronger than

expansiveness, extending the notion of N -expansiveness of Morales. In terms of our δ-observer

we can say that f is N -expansive if there is δ > 0 such that if |A| = N + 1, a δ-observer will

be able to say that A has at least two points given that he knows all of the iterates fk(A) for

k ∈ Z, i.e., |fk(A)|δ > 1 for some k ∈ Z. Let us introduce our main de�nition of this section.

De�nition 4.3.2. Given integer numbersm > n ≥ 1 we say that f : X → X is (m,n)-expansive

if there is δ > 0 such that if |A| = m then there is k ∈ Z such that |fk(A)|δ > n.

The �rst problem under study is the classi�cation of these de�nitions. We prove that

(m,n)-expansiveness implies N -expansiveness if m ≤ (N + 1)n. In particular, if m ≤ 2n then

(m,n)-expansiveness implies expansiveness. These results are stated in Corollary 4.3.9. We

also show that (m,n)-expansiveness does not imply expansiveness if n ≥ 2. For example,

Anosov di�eomorphisms are known to be expansive and a consequence of Theorem 4.3.20 is

that Anosov di�eomorphisms are not (m,n)-expansive for all n ≥ 2.

It is a fundamental problem in dynamical systems to determine which spaces admit ex-

pansive homeomorphisms (or Anosov di�eomorphisms). In this paper we prove that no Peano

continuum admits a (m,n)-expansive homeomorphism if 2m ≥ 3n, see Theorem 4.3.15. We also

show that if X admits a (n+ 1, n)-expansive homeomorphism with n ≥ 3 then X is a �nite set.

Examples of (3, 2)-expansive homeomorphisms are given on countable spaces (hyper-expansive

homeomorphisms), see Theorem 4.3.17.

Our results related with (m,n)-expansiveness are organized as follows. In Section 4.3.1 we

prove basic properties of (m,n)-expansive homeomorphisms. In Section 4.3.2 we prove that

no in�nite compact metric space admits a (4, 3)-expansive homeomorphism. In Section 4.3.3
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we show that no Peano continuum admits a (m,n)-expansive homeomorphism if 2m ≥ 3n. In

Section 4.2 we show that hyper-expansive homeomorphisms are (3, 2)-expansive. In Section

4.3.5 we prove that a homeomorphism with the shadowing property and with two points x, y

satisfying

0 = lim inf
k→∞

dist(fk(x), fk(y)) < lim sup
k→∞

dist(fk(x), fk(y))

cannot be (m, 2)-expansive if m > 2.

4.3.1 Separating Finite Sets

Let (X, dist) be a compact metric space and consider a homeomorphism f : X → X. Let us

recall that for integer numbers m > n ≥ 1 a homeomorphism f is (m,n)-expansive if there is

δ > 0 such that if |A| = m then there is k ∈ Z such that |fk(A)|δ > n. In this case we say that

δ is a (m,n)-expansive constant. The idea of (m,n)-expansiveness is that our δ-observer will

�nd more than n points in every set of m points if he knows all of its iterates.

Remark 4.3.3. From the de�nitions it follows that a homeomorphism is (N + 1, 1)-expansive

if and only if it is N-expansive. In particular, (2, 1)-expansiveness is equivalent with expansive-

ness.

Remark 4.3.4. Notice that if X is a �nite set then every homeomorphism of X is (m,n)-

expansive.

Proposition 4.3.5. If n′ ≤ n and m − n ≤ m′ − n′ then (m,n)-expansive implies (m′, n′)-

expansive with the same expansive constant.

Proof. The case |X| < ∞ is trivial, so, let us assume that |X| = ∞. Consider δ > 0 as a

(m,n)-expansive constant. Given a set A with |A| = m′ we will show that there is k ∈ Z such

that |fk(A)|δ > n′, i.e., the same expansive constant works. We divide the proof in two cases.

First assume that m′ ≥ m. Let B ⊂ A with |B| = m. Since f is (m,n)-expansive, there is

k ∈ Z such that |fk(B)|δ > n. Therefore |fk(A)|δ > n ≥ n′, proving that f is (m′, n′)-expansive.

Now suppose that m′ < m. Given that |A| = m′ and |X| = ∞ there is C ⊂ X such that

A∩C = ∅ and |A∪C| = m. By (m,n)-expansiveness, there is k ∈ Z such that |fk(A∪C)|δ > n.

Then, there is a δ-separated set D ⊂ fk(A ∪ C) with |D| > n. Notice that

|fk(A) ∩D| = |D \ fk(C)| ≥ |D| − |fk(C)| > n− (m−m′)

and since n− (m−m′) ≥ n′ by hypothesis, we have that fk(A) ∩D is a δ-separated subset of

fK(A) with more than n′ points, that is |fk(A)|δ > n′. This proves the (m′n′)-expansiveness

of f in this case too.

As a consequence of Proposition 4.3.5 we have that
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1. (m,n)-expansive implies (m+ 1, n)-expansive and

2. (m,n)-expansive implies (m− 1, n− 1)-expansive.

In Table 4.3.1 below we can easily see all these implications. The following proposition allows

us to draw more arrows in this table, for example: (4, 2)⇒ (2, 1).

Table 4.1: Basic hierarchy of (m,n)-expansiveness. Each pair (m,n) in the table stands for

�(m,n)-expansive�. In the �rst position, (2,1), we have expansiveness. In the �rst line, of the

form (N + 1, 1), we have N -expansive homeomorphisms.

(2, 1) ⇒ (3, 1) ⇒ (4, 1) ⇒ . . .

⇑ ⇑ ⇑
(3, 2) ⇒ (4, 2) ⇒ (5, 2) ⇒ . . .

⇑ ⇑ ⇑
(4, 3) ⇒ (5, 3) ⇒ (6, 3) ⇒ . . .

⇑ ⇑ ⇑
. . . . . . . . .

Proposition 4.3.6. If a, n ≥ 2 and f : X → X is an (an, n)-expansive homeomorphism then

f is (a, 1)-expansive.

In order to prove it, let us introduce two previous results.

Lemma 4.3.7. If A,B ⊂ X are �nite sets and δ > 0 satis�es |A| = |A|δ and |B|δ = 1 then for

all ε > 0 it holds that

|A ∪B|δ+ε ≤ |A|ε + |B|δ − |A ∩B|.

Proof. If A ∩B = ∅ then the proof is easy because

|A ∪B|δ+ε ≤ |A|δ+ε + |B|δ+ε ≤ |A|ε + |B|δ.

Assume now that A ∩ B 6= ∅. Since |A| = |A|δ we have that A is δ-separated. Therefore

|A ∩B| = 1 because |B|δ = 1. Assume that A ∩B = {y}. Let us prove that |A ∪B|δ+ε ≤ |A|ε
and notice that it is su�cient to conclude the proof of the lemma.

Let C ⊂ A ∪B be a (δ + ε)-separated set such that |C| = |A ∪B|δ+ε. If C ⊂ A then

|A ∪B|δ+ε = |A|δ+ε ≤ |A|ε.

Therefore, let us assume that there is x ∈ C \ A. De�ne the set

D = (C ∪ {y}) \ {x}.
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Notice that |C| = |D| and D ⊂ A.

We will show that D is ε-separated. Take p, q ∈ D and arguing by contradiction assume that

p 6= q and dist(p, q) ≤ ε. If p, q ∈ C there is nothing to prove because C is (δ + ε)-separated.

Assume now that p = y. We have that dist(x, p) ≤ δ because x, p ∈ B and |B|δ = 1. Thus

dist(x, q) ≤ dist(x, p) + dist(p, q) ≤ ε+ δ.

But this is a contradiction because x, q ∈ C and C is (ε+ δ)-separated.

Lemma 4.3.8. If f is (m+ l, n+ 1)-expansive then f is (m,n)-expansive or (l, 1)-expansive.

Proof. Let us argue by contradiction and take an (m + l, n + 1)-expansive constant α > 0.

Since f is not (m,n)-expansive for ε ∈ (0, α) there is a set A ⊂ X such that |A| = m and

|fk(A)|ε ≤ n for all k ∈ Z. Take δ > 0 such that |A| = |A|δ and δ + ε < α.

Since f is not (l, 1)-expansive there is B such that |B| = l and |fk(B)|δ = 1 for all k ∈ Z.
By Lemma 4.3.7 we have that

|fk(A ∪B)|δ+ε ≤ |fk(A)|ε + |fk(B)|δ − |A ∩B| ≤ n+ 1− |A ∩B|,

for all k ∈ Z. Also, we know that |A ∪ B| = m + l − |A ∩ B|. If we denote r = |A ∩ B| then
f is not (m + l − r, n + 1− r)-expansive. And by Proposition 4.3.5 we conclude that f is not

(m+ l, n+ 1)-expansive. This contradiction proves the lemma.

Proof of Proposition 4.3.6. Assume by contradiction that f is not (a, 1)-expansive. Since f

is (an, n)-expansive, by Lemma 4.3.8 we have that f has to be (a(n − 1), n − 1)-expansive.

Arguing inductively we can prove that f is (a(n− j), n− j)-expansive, for j = 1, 2, . . . , n− 1.

In particular, f is (a, 1)-expansive, which is a contradiction that proves the proposition.

Corollary 4.3.9. If m ≤ an and f is (m,n)-expansive then f is (a, 1)-expansive (i.e. (a− 1)-

expansive). In particular, if m ≤ 2n and f is (m,n)-expansive then f is expansive.

Proof. By Proposition 4.3.5 we have that f is (an, n)-expansive. Therefore, by Proposition

4.3.6 we have that f is (a, 1)-expansive.

4.3.2 Separating 4 points

In this section we prove that (n+ 1, n)-expansiveness with n ≥ 3 implies that X is �nite.

Theorem 4.3.10. If X is a compact metric space admitting a (4, 3)-expansive homeomorphism

then X is a �nite set.
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Proof. By contradiction assume that f is a (4, 3)-expansive homeomorphism ofX with |X| =∞
and take an expansive constant δ > 0. We know that f cannot be positive expansive (recall

Theorem 3.2.3). Therefore there are x1, x2 such that x1 6= x2 and

dist(fk(x1), fk(x2)) < δ (4.4)

for all k ≥ 0. Analogously, f−1 is not positive expansive, and we can take y1, y2 such that

y1 6= y2 and

dist(fk(y1), fk(y2)) < δ (4.5)

for all k ≤ 0. Consider the set A = {x1, x2, y1, y2}. We have that 2 ≤ |A| ≤ 4 (we do not know

if the 4 points are di�erent). By inequalities (4.4) and (4.5) we have that |fk(A)|δ < |A| for all
k ∈ Z. If n = |A| then we have that f is not (n, n− 1)-expansive. In any case, n = 2, 3 or 4, by

Proposition 4.3.5 (see Table 4.1) we conclude that f is not (4, 3)-expansive. This contradiction

�nishes the proof.

Remark 4.3.11. If X is a compact metric space admitting a (n + 1, n)-expansive homeomor-

phism with n ≥ 3 then X is a �nite set. It follows by Theorem 4.3.10 and Proposition 4.3.5.

Corollary 4.3.12. If f : X → X is a homeomorphism of a compact metric space and |X| =∞
then for all δ > 0 and m ≥ 4 there is A ⊂ X with |A| = m such that |fk(A)|δ < |A| for all

k ∈ Z.

Proof. It is just a restatement of Remark 4.3.11.

4.3.3 On Peano continua

In this section we study (m,n)-expansiveness on Peano continua. Let us start recalling that a

continuum is a compact connected metric space and a Peano continuum is a locally connected

continuum. A singleton space (|X| = 1) is a trivial Peano continuum.

De�nition 4.3.13. For x ∈ X and δ > 0 de�ne the stable and unstable set of x as

W s
δ (x) = {y ∈ X : dist(fk(x), fk(y)) ≤ δ ∀ k ≥ 0},

W u
δ (x) = {y ∈ X : dist(fk(x), fk(y)) ≤ δ ∀ k ≤ 0}.

Remark 4.3.14. Notice that (m,n)-expansiveness implies continuum-wise expansiveness for

all m > n ≥ 1.

Theorem 4.3.15. If X is a non-trivial Peano continuum then no homeomorphism of X is

(m,n)-expansive if 2m ≤ 3n.
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Proof. Let δ be a positive real number and assume that f is (m,n)-expansive. As we remarked

above, f is a continuum-wise expansive homeomorphism. By Proposition 4.1.8 we know that for

such homeomorphisms on a Peano continuum, every point has non-trivial stable and unstable

sets. Take n di�erent points x1, . . . , xn ∈ X and let δ′ ∈ (0, δ) be such that dist(xi, xj) > 2δ′

if i 6= j. For each i = 1, . . . , n, we can take yi ∈ W s
δ′(xi) and zi ∈ W u

δ′(xi) with xi 6= yi and

xi 6= zi. Consider the set A = {x1, y1, z1, . . . , xn, yn, zn}. Since dist(xi, xj) > 2δ′ if i 6= j,

and yi, zi ∈ Bδ′(xi) we have that |A| = 3n. If Ai denotes the set {xi, yi, zi} we have that

|fk(Ai)|δ′ ≤ 2 for all k ∈ Z. This is because if k ≥ 0 then dist(fk(xi), f
k(yi)) ≤ δ′ and if k ≤ 0

then dist(fk(xi), f
k(zi)) ≤ δ′. Therefore |fk(A)|δ′ ≤ 2n, and then |fk(A)|δ ≤ 2n. Since δ > 0

and n ≥ 1 are arbitrary, we have that f is not (3n, 2n) expansive for all n ≥ 1. Finally, by

Proposition 4.3.5, we have that f is not (m,n)-expansive if 2m ≤ 3n.

Corollary 4.3.16. If f : X → X is a homeomorphism and X is a non-trivial Peano continuum

then for all δ > 0 there is A ⊂ X such that |A| = 3 and |fk(A)|δ ≤ 2 for all k ∈ Z.

Proof. By Theorem 4.3.15 we know that f is not (3, 2)-expansive. Therefore, the proof follows

by de�nition.

4.3.4 Hyper-expansive homeomorphisms

Theorem 4.3.17. If f : X → X is a hyper-expansive homeomorphism and |X| =∞ then f is

(m,n)-expansive if and only if n < 3.

Proof. Let us start with the converse part of the theorem. We know that f is (m, 1)-expansive

for all m > 1. We will show that f is (3, 2)-expansive (which implies (m, 2)-expansivity for

all m > 2). Let Pa be the set of periodic attractors, Pr the set of periodic repellers and take

x1, . . . , xj one point in each wandering orbit (recall that, Theorem 4.2.10, hyper-expansiveness

implies that f has just a �nite number of orbits). De�ne Q = {x1, . . . , xj}. Take δ > 0 such

that

1. if p, q ∈ Pa ∪ Pr and p 6= q then dist(p, q) > δ,

2. if xi ∈ Q then Bδ(xi) = {xi}, recall that wandering points are isolated points by Theorem

4.2.10,

3. if p ∈ Pa, xi ∈ Q and k ≤ 0 then dist(p, fk(xi)) > δ,

4. if q ∈ Pr, xi ∈ Q and k ≥ 0 then dist(p, fk(xi)) > δ and

5. if x, y ∈ Q and k > 0 > l then dist(fk(x), f l(y)) > δ.

Let us prove that such δ is a (3, 2)-expansive constant. Take a, b, c ∈ X with |{a, b, c}| = 3.

The proof is divided by cases:

• If a, b, c ∈ P = Pa ∪ Pr then item 1 above concludes the proof.
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• If a, b ∈ P and c /∈ P then there is k ∈ Z such that fk(c) ∈ Q. In this case items 1 and 2

conclude the proof.

• Assume now that a ∈ P and b, c /∈ P . Without loss of generality let us suppose that a is

a repeller. Let kb, kc ∈ Z be such that fkb(b), fkc(c) ∈ Q. De�ne k = min{kb, kc}. In this

way: dist(fk(a), fk(b)), dist(fk(a), fk(c)) ≥ δ by item 4 and dist(fk(b), fk(c)) ≥ δ by item

2.

• If a, b, c /∈ P then consider ka, kb, kc ∈ Z such that fka(a), fkb(b), fkc(c) ∈ Q. Assume,

without loss, that ka ≤ kb ≤ kc. Take k = kb. In this way, items 2 and 5 �nishes the

converse part of the proof of the theorem.

To prove the direct part by contradiction, assume that f is (m′, n)-expansive with n ≥ 3.

This implies that f is (m, 3)-expansive if m′ − m = n − 3. Take δ > 0 an (m, 3)-expansive

constant. Since |X| = ∞ there is at least one wandering point x. Without loss of generality

assume that limk→∞ f
k(x) = pa an attractor �xed point and limk→−∞ f

k(x) = pr a repeller

�xed point. Take k1, k2 ∈ Z such that dist(fk(x), pr) < δ for all k ≤ k1 and dist(fk(x), pa) < δ

for all k ≥ k2. Let l = k2−k1 and de�ne x1 = f−k1(x), and xi+1 = f l(xi) for all i ≥ 1. Consider

the set A = {x1, . . . , xm}. By construction we have that |A| = m and |fk(A)|δ ≤ 3 for all

k ∈ Z. Contradicting that δ is an (m, 3)-expansive constant and �nishing the proof.

Remark 4.3.18. In light of the previous proof one may wonder if a smart δ-observer will not

be able to say that A has more than 3 points. We mean, we are assuming that a δ-observer will

say that A has n′ points with

n′ = max
k∈Z
|fk(A)|δ.

According to the dynamic of the set A in the previous proof, we guess that with more reasoning

a smarter δ-observer will �nd that A has more than 3 points.

Theorem 4.3.17 gives us examples of (3, 2)-expansive homeomorphisms on in�nite count-

able compact metric spaces. A natural question is: does (3, 2)-expansiveness implies hyper-

expansiveness? I do not know the answer, but let us remark some facts that may be of interest.

If f is (3, 2)-expansive then:

• For all x ∈ X either the stable or the unstable set must be trivial. It follows by the

arguments of the proof of Theorem 4.3.15.

• If x, y are bi-asymptotic, i.e., dist(fk(x), fk(y)) → 0 as k → ±∞ then they are isolated

points of the space. Suppose that x were an accumulation point. Given δ > 0 take k0

such that if |k| > k0 then dist(fk(x), fk(y)) < δ. Take a point z close to x such that

dist(fk(x), fk(z)) < δ if |k| ≤ k0 (we are just using the continuity of f). Then x, y, z

contradicts (3, 2)-expansiveness.
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An expansive homeomorphism with these two properties was given in Section 3.7.1 (interval

exchange subshift). This example is not hyper-expansive because, since it is minimal and non-

trivial, the space is uncountable. But, is it (3, 2)-expansive?

Proposition 4.3.19. There are (4, 2)-expansive homeomorphisms that are not (3, 2)-expansive.

Proof. Let us prove it giving an example. Consider a countable compact metric space X and

a homeomorphism f : X → X with the following properties:

1. f has 5 orbits,

2. a, b, c ∈ X are �xed points of f ,

3. there is x ∈ X such that limk→−∞ f
k(x) = a and limk→+∞ f

k(x) = b,

4. there is y ∈ X such that limk→−∞ f
k(y) = b and limk→+∞ f

k(y) = c.

In order to see that f is not (3, 2)-expansive consider ε > 0. Take k0 ∈ Z such that for all k ≥ k0

it holds that dist(fk(x), b) < ε and dist(f−k(y), b) < ε. De�ne u = fk0(x) and v = f−k0(y). In

this way |{fk(u), b, fk(v)}|ε ≤ 2 for all k ∈ Z. This proves that f is not (3, 2)-expansive.

Let us now indicate how to prove that f is (4, 2)-expansive. Consider ε > 0 such that if i ≥ 0

and j ∈ Z then dist(f−i(x), f j(y)) > ε and dist(f j(x), f i(y)) > ε. Now, a similar argument as

in the proof of Theorem 4.3.17, shows that f is (4, 2)-expansive.

4.3.5 With the shadowing property

In this section we prove that an important class of homeomorphisms are not (m,n)-expansive

for all m > n ≥ 2. In order to state this result let us recall that a δ-pseudo orbit is a sequence

{xk}k∈Z such that dist(f(xk), xk+1) ≤ δ for all k ∈ Z. We say that a homeomorphism has the

shadowing property if for all ε > 0 there is δ > 0 such that if {xk}k∈Z is a δ-pseudo orbit then

there is x such that dist(fk(x), xk) < ε for all k ∈ Z. In this case we say that x ε-shadows the

δ-pseudo orbit.

Theorem 4.3.20. Let f : X → X be a homeomorphism of a compact metric space X. If f has

the shadowing property and there are x, y ∈ X such that

0 = lim inf
k→+∞

dist(fk(x), fk(y)) < lim sup
k→+∞

dist(fk(x), fk(y))

then f is not (m,n)-expansive.

Proof. By Proposition 4.3.5 it is enough to prove that f cannot be (m, 2)-expansive. Consider

ε > 0. We will de�ne a set A with |A| = ∞ such that for all k ∈ Z, fk(A) ⊂ Bε(f
k(x)) ∪

Bε(f
k(y)), proving that f is not (m, 2)-expansive for all m > 2.
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Consider two increasing sequences al, bl ∈ Z, ρ ∈ (0, ε) and δ > 0 such that

a1 < b1 < a2 < b2 < a3 < b3 < . . . ,

dist(fal(x), fal(y)) < δ,

dist(f bl(x), f bl(y)) > ρ

for all l ≥ 1 and assume that every δ-pseudo orbit can be (ρ/2)-shadowed. For each l ≥ 1

de�ne the δ-pseudo orbit zlk as

zlk =

{
fk(x) if k < al,

fk(y) if k ≥ al.

Then, for every l ≥ 1 there is a point wl whose orbit (ρ/2)-shadows the δ-pseudo orbit {zlk}k∈Z.
Let us now prove that if 1 ≤ l < s then wl 6= ws. We have that al < bl < as. Therefore

zlbl = f bl(y) and zsbl = f bl(x). Since wl and ws (ρ/2)-shadows the pseudo orbits zl and zs

respectively, we have that

dist(f bl(wl), f bl(y)), dist(f bl(ws), f bl(x)) < ρ/2.

We conclude that wl 6= ws because dist(f bl(x), f bl(y)) > ρ. Therefore, if we de�ne A = {wl :

l ≥ 1} we have that |A| =∞. Finally, since ρ < ε, we have that fk(A) ⊂ Bε(f
k(x))∪Bε(f

k(y))

for all k ∈ Z. Therefore, |fk(A)|ε ≤ 2 for all k ∈ Z.

Remark 4.3.21. Examples where Theorem 4.3.20 can be applied are Anosov di�eomorphisms

and symbolic shift maps. Also, if f : X → X is a homeomorphism with an invariant set K ⊂ X

such that f : K → K is conjugated to a symbolic shift map then Theorem 4.3.20 holds because

the (m,n)-expansiveness of f in X implies the (m,n)-expansiveness of f restricted to any

compact invariant set K ⊂ X as can be easily checked.





Chapter 5

Surface homeomorphisms

In this chapter we study cw-expansive homeomorphisms of compact surfaces. In Section 5.1

we construct product boxes for cw-expansive homeomorphisms without small bi-asymptotic

sectors. Our proofs are based on Lewowicz ideas on the study of expansive surface homeomor-

phisms. In Section 5.2 we prove that 2-expansive homeomorphisms without wandering points

are expansive. In Section 5.3 we give an example of a 2-expansive homeomorphism that is not

expansive.

In this chapter S will be a compact surface and f : S → S will denote a homeomorphism.

5.1 Cw-expansiveness and bi-asymptotic sectors

5.1.1 Regular cw-expansiveness

De�nition 5.1.1. A surface homeomorphism f : S → S is a regular cw-expansive homeomor-

phism if it is cw-expansive and stable and unstable continua are locally connected.

Recall from De�nition 3.4.11, that f isN-expansive if there is δ > 0 such that if diam(fn(C)) ≤
δ for all n ∈ Z then C is a �nite set.

Theorem 5.1.2. Every N-expansive surface homeomorphism is a regular cw-expansive home-

omorphism.

Since this result is essentially [74, Lemma 2.3] or [52, Proposition 3.1], we only give a sketch.

Proof. Let α > 0 be such that if diam(fn(A)) < α for all n ∈ Z then |A| < ∞. Arguing

by contradiction assume that C is a stable continuum that is not locally connected at x ∈ C.
Without loss of generality we assume that diam(fn(C)) < α for all n ≥ 0. Since C is not

locally connected at x we have a sequence of continua Xk converging in the Hausdor� metric

to a non-trivial continuum X∞ with k → ∞ such that (X∞ ∪k∈N Xk) ⊂ C, Xk ∩X∞ = ∅ and

61
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Xk ∩Xj = ∅ if j, k ∈ N and j 6= k, (see Chapter IV [136]). Observe that there is an open set

U that is separated by every Xk and by X∞. Assume that diam(U) < α. Let yk ∈ Xk be such

that yk → y ∈ X∞ ∩ U . Take Yk ⊂ clos(U) an unstable continuum containing yk meeting the

boundary of U such that diam(fn(Yk)) < α for all n ≤ 0. Since f is N -expansive, if we let

k → ∞ we �nd that X∞ contains a non-trivial continuum E that is a limit of Yk. But this

contradicts that f is cw-expansive and consequently that it is N -expansive.

5.1.2 Bi-asymptotic sectors

De�nition 5.1.3. A disc bounded by the union of a stable arc and an unstable arc is called a

bi-asymptotic sector.

Proposition 5.1.4. 1 Let f be a regular cw-expansive homeomorphism. Suppose that there is

a small closed disc U ⊂ S without bi-asymptotic sectors and containing an unstable arc α in

its boundary. Then for all x ∈ α there is a stable arc from x to ∂U contained in U .

Proof. Given x ∈ α denote by C the connected component of W s(x)∩ closU containing x. Let

β be the arc ∂U \ α. By contradiction assume that C ∩ β = ∅. The point x separates α in two

curves α1 and α2. Given ε > 0 consider a curve J starting at α1 and ending in α2 such that

the interior of J is contained in (U \ C) ∩ Bε(C). If ε is small we know that there is no stable

arc from a point of J to β. Therefore, for every z ∈ J the stable set of z meets the boundary

of U at α. Let Ji be set of points of J such that its stable set cuts αi, for i = 1, 2. Both sets

are closed and non-empty. Also J = J1 ∪ J2. Since J is connected, there is p ∈ J1 ∩ J2. But

this means that there is a stable arc from p to x, which is a contradiction because J is disjoint

from C.

5.1.3 Topological bi-asymptotic sectors

Let f be a cw-expansive homeomorphism.

De�nition 5.1.5. Let C be a stable continuum and let D be an unstable continuum. We say

that (C,D) form a topological bi-asymptotic sector if C ∩ D is not connected and C ∪ D is

contained in a disc U ⊂ S.

Proposition 5.1.6. If f is cw-expansive and has no arbitrarily small topological bi-asymptotic

sectors then f is a regular cw-expansive homeomorphism.

Proof. By contradiction assume that A is a stable continuum that is not locally connected. Let

An, n ≥ 1, be a sequence of pairwise disjoint stable subcontinua of A. Assume that An converges

1See Lemma 3.2 in [74]
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to A∗ ⊂ A in the Hausdor� metric and An is disjoint from A∗ for all n ≥ 1. Take p ∈ A∗ and
δ > 0 such that A∗ and An separate Bδ(p) for all n ≥ 1 and there are no bi-asymptotic sectors

in Bδ(p). Take xn ∈ An such that xn → p. For each n consider an unstable continuum Un not

contained in Bδ(p) such that xn ∈ Un. Since there are no topological bi-asymptotic sectors,

each Un can meet just one of the stable continua of the sequence An. Taking limit as n → ∞
we obtain an unstable non-trivial subcontinuum contained in A∗. This contradicts that f is

cw-expansive and the proof ends.

5.1.4 Product boxes

De�nition 5.1.7. A product box is a homeomorphism φ : [0, 1] × [0, 1] → K ⊂ S taking

horizontal lines onto stable arcs and vertical lines onto unstable arcs. The corners and the

sides of the product box are the images of the corners and the sides of the square [0, 1]× [0, 1].

Theorem 5.1.8. If f is a regular cw-expansive surface homeomorphism without arbitrarily

small bi-asymptotic sectors then for all x ∈ S a neighborhood of x is covered by at least 4

product boxes with corner at x and intersecting in the sides.

Proof. Given x ∈ S consider an open disc D around x. Let α be a stable arc from x to ∂D.

Consider an unstable arc β from x to ∂D such that there is a component U of D \ (α∪ β) such

that there is neither a stable nor unstable arc from x to ∂D contained in U .

By Proposition 5.1.4 for each y ∈ α there is an unstable arc uy ⊂ U from y to ∂U . Also,

for all z ∈ β there is a stable arc sz ⊂ U from z to ∂U . Let us prove that there are y0 ∈ α
and z0 ∈ β such that uy0 cuts sz0 . If this is not the case we can take yn ∈ α and zn ∈ β both

converging to x and such that uyn ∩ szn = ∅. Then we have a contradiction by taking limit in

the Hausdor� metric of the continua uyn (we obtain an unstable arc contained in U from x to

∂D).

Let V be the rectangle limited by the four curves α, β, uy0 and sz0 . Applying Proposition

5.1.4 in V it is easy to see that the closure of V is a product box. Now applying this construction

a �nite number of times the proof concludes. There will be at least 4 product boxes because

there are no bi-asymptotic sectors.

5.1.5 Expansive homeomorphisms

Theorem 5.1.9. If f : S → S is a homeomorphism of a compact surface S then the following

statements are equivalent:

1. f is expansive

2. f is cw-expansive without topological bi-asymptotic sectors.

3. f is a regular cw-expansive homeomorphism without bi-asymptotic sectors,
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Proof. (1→ 2). Expansive homeomorphisms of compact metric spaces are always cw-expansive.

Also, expansive homeomorphisms of compact surfaces are known to be conjugate to pseudo-

Anosov di�eomorphisms. Then, it is easy to see that there are no topological bi-asymptotic

sectors.

(2 → 3). By Proposition 5.1.6 we have that f is a regular cw-expansive homeomorphism.

It only rest to note that bi-asymptotic sectors are topological bi-asymptotic sectors.

(3→ 1). By Theorem 5.1.8 we can see that there is α > 0 such that W s
α(x)∩W u

α (x) = {x}
for all x ∈ S. Therefore, α is an expansive constant.

5.2 Two-expansiveness

In this section f : S → S is a 2-expansive homeomorphisms with non-wandering set Ω(f) = S.

We will prove that such homeomorphism has no bi-asymptotic sectors (recall De�nition 5.1.3).

Then, applying our previous results we will be able to conclude that f is expansive.

Let α > 0 be a 2-expansive constant for f , i.e., given any subset C ofM , if diam(fn(C)) ≤ α

for all n ∈ Z then C has at most two points.

Let D be a bi-asymptotic sector of diameter less than α bounded by a stable arc as and an

unstable arc au. For p ∈ D de�ne Cs
D(p) and Cu

D(p) as the connected component of W s(p)∩D
and W u(p) ∩D containing p respectively.

Lemma 5.2.1. If Cu
D(p) separates D then it meets twice the stable boundary as of D.

Proof. Observe that D is a 2-disk. Fix p an interior point of D. Since Cu
D(p) separates D we

have that ∂D ∩ Cu
D(p) has at least two points. Moreover, since Cu

D(p) is arc-connected, these

two points can be joined by an arc b contained in Cu
D(p). We need to show that these points are

in as. There are three possible cases. In the �rst case b cuts twice the unstable boundary of D

as in the �rst picture of Figure 5.1. Both unstable arcs bound an open disc U , as in the �gure.

U

A

B

C

p

p
b b

b

p

Figure 5.1: The only possible case is the right hand side picture.

This is a contradiction to Theorem 4.1.6, because the points in U are Lyapunov stable. The

second case corresponds to b intersecting the stable and the unstable arcs of the bi-asymptotic

sector. In this case we get three points at as contradicting the 2-expansiveness as shown in the

second picture of Figure 5.1: the points A,B,C are in the same local stable and local unstable
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set. Therefore the only possible case corresponds to the right hand side picture at Figure 5.1,

that is exactly what we want to prove.

In the set F s = {Cs
D(x) : x ∈ D} we can de�ne an order as Cs

D(x) < Cs
D(y) if as and Cs

D(y)

are separated by Cs
D(x). See Figure 5.2.

C )x
s

a
s

a
u

(

C )
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( y

Figure 5.2: Order of stable arcs separating a bi-asymptotic sector.

Lemma 5.2.2. The order < in F s is a total order.

Proof. Given Cs
D(x), Cs

D(y) ∈ F s, Cs
D(x) 6= Cs

D(y), we have to prove that Cs
D(x) < Cs

D(y)

or Cs
D(y) < Cs

D(x). By contradiction assume this is not the case. Therefore we can consider

γ1, γ2, γ3 ⊂ au three subarcs of the unstable boundary of the bi-asymptotic sector D. See Figure

5.3.
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Figure 5.3: Impossible cases for a 2-expansive homeomorphism.

Let E be the connected component of D\ (Cs
D(x)∪Cs

D(y)) containing as as shown in Figure

5.3. For 1 ≤ i < j ≤ 3, de�ne

Aij = {x ∈ E : Cs
D(x) ∩ γi 6= ∅, Cs

D(x) ∩ γj 6= ∅}.

We have that Cs
D(x) ⊂ A12, C

s
D(y) ⊂ A23 and a

s ⊂ A13, so, these sets are not empty. It is easy

to see that they are closed and by the previous lemma they cover E. Since E is connected they

can not be disjoint, but this contradicts 2-expansiveness.

Given a stable arc b separating D we consider the map g : b→ b de�ned by

Cu
D(x) ∩ b = {x, g(x)}.
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Notice that if Cu
D(x) ∩ Cs

D(x) = {x} then g(x) = x. The hypothesis of 2-expansiveness implies

that Cu
D(x) ∩ b has at most two points, therefore g is well de�ned.

Lemma 5.2.3. For every stable arc b ⊂ D separating D, the map g : b→ b is continuous.

Proof. Since b is homeomorphic to the interval [0, 1] we can consider in b an order de�ning its

topology. We will show that g is decreasing with respect to such an order on the arc b. It is

well known that this allows us to conclude that g is continuous because g : b → b is bijective,

in fact g = g−1 as can be easily seen from the de�nition of g.

By contradiction suppose that g is not decreasing. Then there are x, y ∈ b such that

x < y and g(x) < g(y). We have essentially two possible cases: x < g(x) < y < g(y) or

x < y < g(x) < g(y). Other cases are obtained interchanging x with g(x) or y with g(y). The

�rst case contradicts Lemma 5.2.2 because the arc from x to g(x) is not comparable with the

arc from y to g(y). The second case contradicts 2-expansiveness, because the unstable arc γ1

from x to g(x) and the arc γ2 from y to g(y) must have nontrivial intersection. Then γ = γ1∪γ2

is a unstable continuum containing the four points x, y, g(x), g(y). Since these points are also

in the stable arc b we contradict 2-expansiveness.

Lemma 5.2.4. If b ⊂ D is an unstable arc meeting twice as then there is z ∈ b such that

b ∩ Cs
D(z) = {z} (a �xed point of g).

Proof. We need to prove that there is a �xed point of g in b as in Figure 5.4. Since b is

g(x)

z

x

A
B

Figure 5.4: Illustration of the map g.

homeomorphic to an interval and g is a homeomorphism reversing orientation we have that g

must have a �xed point z ∈ b.

5.2.1 Regular bi-asymptotic sectors.

De�nition 5.2.5. A bi-asymptotic sector is regular if for all p interior to D we have that Cs
D(p)

and Cu
D(p) separate D.

Proposition 5.2.6. If f is 2-expansive and Ω(f) = M then there are no regular bi-asymptotic

sectors of diameter less than α.
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Proof. By contradiction assume that D is a regular bi-asymptotic sector of diameter smaller

than α. Since there are no wandering points we have that there is p ∈ D and k > 0 arbitrarily

large such that q = fk(p) is in D. Since the set of points ξ such that g(ξ) = ξ is of �rst category

in the sense of Baire and Ω(f) = M there are (a residual subset of) points p ∈ D such that

{p, p′} = Cs
D(p) ∩ Cu

D(p) with p 6= p′. The points {p, p′} = Cs
D(p) ∩ Cu

D(p) determine a regular

bi-asymptotic sector Dp contained in D as in Figure 5.5 (b). For arbitrarily large k, the stable

f  (l)
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z’

l r’q’

f
k
(D )
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y

z

Dp

a

a

s

u

Dy’x’

x’’ y’’

Figure 5.5: A regular bi-asymptotic sector .

arc (in red at Figure 5.5) de�ned by p and p′ is transformed by fk into a stable arc with

extreme points q = fk(p) and r = fk(p′) that is contained in D. The sector Dp is transformed

into fk(Dp) and the image by fk of the unstable arc u(p, p′) from p to p′ is not contained in D.

Then, there are two points q′, r′ ∈ as ∩ fk(u(p, p′)) as in Figure 5.5 (recall that as is the stable

arc in the bi-asymptotic sector D). Now consider the stable arc l = s(q′, r′) contained in as.

The stable arc f−k(l) separates the bi-asymptotic sector Dp and therefore we can apply Lemma

5.2.4 to obtain a point z ∈ f−k(l) such that the unstable arc u(z) through z in Dp meets f−k(l)

only at z. Take x, y the intersection points of the stable arc in the boundary of Dp and u(z).

Consider the points x′ = fk(x), y′ = fk(y) and z′ = fk(z) as in Figure 5.5 . The unstable arcs

in D through x′ and y′ meet as at x′′ and y′′ respectively. The three points z′, x′′, y′′ are in the

intersection of a local stable arc and a local unstable arc both contained in D and so the orbits

of x′′ and y′′ α-shadow that of z and the orbit of x′′ α-shadows the orbit of y′′, contradicting

2-expansiveness.
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5.2.2 Bi-asymptotic sectors with spines

Let D be a bi-asymptotic sector with ∂D = as ∪ au, where as is a stable arc and au is an

unstable arc.

De�nition 5.2.7. A non trivial continuum Cs
D(p) (Cu

D(p)) is a stable spine (resp. unstable

spine) if it does not separate D.

As before, we consider the map g : au → au de�ned by au ∩Cs
D(x) = {x, g(x)}. Recall that,

by Lemma 5.2.3, g is continuous and reverses orientation. As a consequence if a point p ∈ au

is in a stable spine then p is a �xed point of g.

Lemma 5.2.8. Bi-asymptotic sectors contain at most one stable spine and one unstable spine.

Proof. Since g is a homeomorphism of an arc and it reverses orientation we have that g has

exactly one �xed point. So there is at most one stable spine. Similarly there is at most one

unstable spine.

Lemma 5.2.9. If Ω(f) = S and D is a bi-asymptotic sector then if there is a stable spine then

there is an unstable one and it cuts the unstable spine in D.

Proof. By contradiction suppose that there is a stable spine and an unstable spine and they

are disjoint . Denote by Ss and Su the stable and the unstable spines respectively. For all

x ∈ Su we have that Cs
D(x) separates D because if this were not the case the spines meets at

x. We can de�ne a partial order in Su as x < y if Cs
D(y) separates x and as. It is easy to see

that there is a minimal z ∈ Su with respect to this order. In this way we �nd a bi-asymptotic

sector D′ ⊂ D bounded by a sub-arc of au and an arc in Cs
D(z). Arguing in a similar way

we �nd another bi-asymptotic sector D′′ ⊂ D′ without spines. Then D′′ is a regular sector,

contradicting Proposition 5.2.6.

Now if there is a stable spine but no unstable one in a similar way we may �nd a regular

bi-asymptotic sector leading again to a contradiction.

Theorem 5.2.10. If f is 2-expansive and Ω(f) = M then there are no bi-asymptotic sectors

and consequently f is expansive.

Proof. First notice that every regular stable leaf meets twice every unstable leaf. That is

because there are exactly one stable spine and one unstable spine in D. Moreover, both cuts

lie in di�erent components of the complement in D of the union of the stable with the unstable

leaves. Then there is a local product structure around every point in D away from the spines.

Since we are assuming that there are not wandering points we conclude that periodic points

are dense in D (arguing as for Anosov di�eomorphisms).
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Take p ∈ D a periodic point not in a spine. Denote by q the other point in the intersection

of Cs
D(p) with Cu

s (D). Given δ > 0 we can assume that dist(fnp, fnq) ≤ δ for all n ∈ Z. Since
p is periodic we have k such that fk(p) = p. Obviously, fn+jk(p) = fn(p) for all n, j ∈ Z.
Therefore

dist(fn+jkp, fn+jkq) = dist(fnp, fn(f jkq)) ≤ δ

for all j, n ∈ Z. Then, the points p and f jkq, with j ∈ Z, contradicts the expansiveness of f for

the expansive constant δ. Since δ is arbitrary we conclude that bi-asymptotic sectors can not

exist if Ω(f) = M and f is 2-expansive.

Finally by Theorem 5.1.9 we have that f is expansive.

5.3 An example

In this section we present an example of a surface 2-expansive homeomorphism with wandering

points that is not expansive. 2 The construction of this example is based on the construction

of a quasi-Anosov di�eomorphism given in [32].

Consider S1 and S2 two disjoint copies of the torus R2/Z2. Let fi : Si → Si be two di�eo-

morphisms such that:

• f1 is a derived-from-Anosov (see for example [111] Section 7.8 for a construction of such a

map),

• f2 is conjugated with f−1
1 ,

• fi has a �xed point pi, p1 is a source and p2 is a sink,

Also assume that there are local charts ϕi : D → Si, D = {x ∈ R2 : ‖x‖ ≤ 2}, such that

1. ϕi(0) = pi,

2. the pull-back of the stable (unstable) foliation by ϕ1 (ϕ2) is the vertical (horizontal) foliation

on D and

3. ϕ−1
1 ◦ f−1

1 ◦ ϕ1(x) = ϕ−1
2 ◦ f2 ◦ ϕ2(x) = x/4 for all x ∈ D.

Let A be the annulus {x ∈ R2 : 1/2 ≤ ‖x‖ ≤ 2} and ψ : R2 → R2 the inversion ψ(x) =

x/‖x‖2. Consider D̂ the open disk {x ∈ R2 : ‖x‖ < 1/2}. On [S1 \ ϕ1(D̂)] ∪ [S1 \ ϕ2(D̂)]

consider the equivalence relation generated by

ϕ1(x) ∼ ϕ2 ◦ ψ(x)

for all x ∈ A. Denote by x the equivalence class of x. The surface

S =
[S1 \ ϕ1(D̂)] ∪ [S1 \ ϕ2(D̂)]

∼
2This example was previously considered jointly with Joaquin Brum and Rafael Potrie, during a

seminar course delivered by Jorge Lewowicz and José Vieitez.
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is a bitorus with the quotient topology. The stable and unstable foliations are illustrated in

Figure 5.6.

Figure 5.6: Foliations in the annulus A. Blue lines represent the unstable foliation (after the

inversion) and the red lines are the stable foliation.

Consider the homeomorphism f : S → S de�ned by

f(x) =

{
f1(x) if x ∈ S1 \ ϕ1(D̂)

f2(x) if x ∈ S2 \ ϕ2(D)

Theorem 5.3.1. There are 2-expansive homeomorphisms of surfaces that are not expansive.

Proof. We will show that f is 2-expansive but it is not expansive. It is not expansive because

Ωf 6= S.

To show that it is 2-expansive notice that

• Ωf is expansive (because it is hyperbolic) and

• Ωf is isolated, i.e. there is an open set U such that Ωf = ∩n∈ZfnU .
So, it only rest to show that there is δ > 0 such that if X ∩ Ωf = ∅ and diam fnX < δ for all

n ∈ Z then |X| < 3. Let A = {x : x ∈ ϕ1(A)}. Let δ > 0 be such thatBδ(x) ⊂ f−1(A)∪A∪f(A)

for all x ∈ A. By construction, we have that W s
δ (x) ∩W u

δ (x) has at most two points if x ∈ A.
Notice that for all x /∈ Ωf there is n ∈ Z such that fnx ∈ A. This �nishes the proof.

5.4 Omega-expansivity

Let M be a smooth compact surface without boundary. Given a di�eomorphisms f : M → M

de�ne Per(f) as the set of periodic points of f and the non-wandering set Ω(f) as the set of
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those x ∈ S satisfying: for all ε > 0 there is n ≥ 1 such that Bε(x)∩fn(Bε(x)) 6= ∅. Recall that
f satis�es Smale's Axiom A if clos(Per(f)) = Ω(f) and Ω(f) is hyperbolic. Recall that Λ ⊂M

is hyperbolic if it is compact, invariant and the tangent bundle over Λ splits as TΛM = Es⊕Eu

the sum of two sub-bundles invariant by df and there are c > 0 and λ ∈ (0, 1) such that:

1. if v ∈ Es then ‖dfn(v)‖ ≤ cλn‖v‖ for all n ≥ 0 and

2. if v ∈ Eu then ‖dfn(v)‖ ≤ cλn‖v‖ for all n ≤ 0.

De�nition 5.4.1. We say that f is Ω-expansive if f : Ω(f)→ Ω(f) is expansive. We say that

f is robustly Ω-expansive if there is an open C1-neighborhood U of f such that every g ∈ U is

Ω-expansive.

De�nition 5.4.2. A C1 di�eomorphism f : M →M is Ω-stable if there is a C1 neighborhood

U of f such that for all g ∈ U there is a homeomorphism h : Ω(f)→ Ω(g) such that h◦f = g◦h.

Recall that f is a star di�eomorphism if there is a C1 neighborhood U of f such that every

periodic point of every g ∈ U is hyperbolic. If f satis�es the axiom A then Ω(f) decomposes

in a �nite disjoint union basic sets Ω(f) = Λ1 ∪ · · · ∪ Λl. A collection Λi1 , . . . ,Λik is called a

cycle if there exist points aj /∈ Ω(f), for j = 1, . . . , k, such that α(aj) ⊂ Λij and ω(aj) ⊂ Λij+1

(with k + 1 ≡ 1). We say that f has not cycles if there are not cycles among the basic sets of

Ω(f). See for example [111] for the de�nition of basic set and more on this subject. Let us cite

a well known result.

Theorem 5.4.3. The following statements are equivalent:

1. f satis�es axiom A and has not cycles,

2. f is Ω-stable,

3. f is a star di�eomorphism.

Proof. (1⇒ 2). It was proved by Smale in 1970 [122].

(2⇒ 3). It was proved by Franks in 1971 [31].

(3⇒ 1). It was proved in 1992 by Aoki [2] and Hayashi [46].

We add another equivalence.

Theorem 5.4.4. A C1 di�eomorphism is robustly Ω-expansive if and only if it is Ω-stable.

Proof. If f is Ω-stable then f satis�es Smale's axiom A. Therefore Ω(f) is hyperbolic and

consequently f : Ω(f) → Ω(f) is expansive. Since f is Ω-stable we have that f is robustly

Ω-expansive.

In order to prove the converse, suppose that f is robustly Ω-expansive. Using Franks'

Lemma it is easy to see that f is a star di�eomorphism.
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5.5 Stable N-expansive surface di�eomorphisms

In this section we will consider a di�eomorphism f of a C∞ compact surface S. As before, the

stable set of x ∈ S is

W s
f (x) = {y ∈ S : lim

n→+∞
dist(fn(x), fn(y)) = 0}.

The unstable set is de�ned by W u
f (x) = W s

f−1(x). Assume that f is Ω-stable, Es, Eu are one-

dimensional and de�ne I = [−1, 1]. Let us recall the following fundamental result for future

reference.

Theorem 5.5.1 (Stable manifold theorem). Let Λ ⊂ S be a hyperbolic set of a Cr di�eo-

morphisms f of a compact surface S. Then, for all x ∈ Λ, W s
f (x) is an injectively immersed

Cr submanifold. Also the map x 7→ W s
f (x) is continuous: there is a continuous function

Φ: Λ→ Embr(I, S) such that for each x ∈ Λ it holds that the image of Φ(x) is a neighborhood

of x in W s
f (x). Finally, these stable manifolds also depend continuously on the di�eomorphisms

f , in the sense that nearby di�eomorphisms yield nearby mappings Φ as above.

Proof. See [99] Appendix 1.

De�nition 5.5.2. A Cr, r ≥ 1, di�eomorphisms f : S → S is Qr-Anosov if it is Ω-stable in

the Cr topology and for all x ∈ S there are δ1, δ2 > 0, a Cr coordinate chart ϕ : U ⊂ S →
[−δ1, δ1] × [δ2, δ2] such that ϕ(x) = (0, 0) and two Cr functions gs, gu : [−δ1, δ1] → [δ2, δ2] such

that the graph of gs and gu are the local expressions of the local stable and the local unstable

manifold of x, respectively, and the degree r Taylor polynomials of gs and gu at 0 are di�erent.

If the polynomials coincide we say that there is an r-tangency at the intersection point.

Remark 5.5.3. For r = 1 we have that Q1-Anosov is quasi-Anosov, and in fact, given that S

is two-dimensional, it is Anosov. For r = 2 we are requiring that if there is a tangency of a

stable and an unstable manifold it is a quadratic one.

Lemma 5.5.4. If f is Ω-stable then for all ε > 0 there are m ≥ 0 and a C1 neighborhood U of

f such that if |n| ≥ m then gn(x) ∈ Bε(Ω(g)) for all x ∈M and g ∈ U .

Proof. By contradiction, take ε > 0, gk → f , xk ∈ M and nk → ∞ such that for all k ∈ N,
dist(gik(xk,Ω(gk)) ≥ ε if |i| ≤ nk. By Theorem 8.3 in [120] and the Ω-stability of f we know

that Ω(gk) → Ω(f) in the Hausdor� metric. Therefore, if xk → x then dist(f i(x),Ω(f)) ≥ ε

for all i ∈ Z. But this is a contradiction because ωf (x) ⊂ Ω(f).

Theorem 5.5.5. In the Cr topology the set of Qr-Anosov di�eomorphisms is an open set.
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Proof. We know that the set of Ω-stable di�eomorphisms is an open set. Let gk be a sequence of

Ω-stable Cr-di�eomorphisms converging to the Cr Ω-stable di�eomorphism f . Assume that gk

is not Qr-Anosov for all k ≥ 0. In order to �nish the proof is it su�cient to show that f is not

Qr-Anosov. Since gk is Ω-stable but it is not Qr-Anosov, there is xk ∈ S with an r-tangency.

Assume that xk → x. By Theorem 5.5.1 and Lemma 5.5.4 we have that there is an r-tangency

at x. Therefore f is not Qr-Anosov. Consequently, the set of Qr-Anosov Cr-di�eomorphisms

is an open set in the Cr topology.

De�nition 5.5.6. We say that a Cr di�eomorphism f is Cr-robustly N -expansive if there is a

Cr neighborhood of f such that every di�eomorphism in this neighborhood is N -expansive.

Remark 5.5.7. For r = N = 1 Mañé [77] proved that a di�eomorphism is robustly expansive

if and only if it is quasi-Anosov.

Lemma 5.5.8. If g : R → R is a Cr functions with r + 1 roots in the interval [a, b] ⊂ R then

g(n) has r+ 1−n roots in [a, b] for all n = 1, 2, . . . , r where g(n) stands for the nth derivative of

g.

Proof. It follows by induction in n using the Rolle's theorem.

Theorem 5.5.9. Every Qr-Anosov Cr di�eomorphism of a compact surface is Cr-robustly

r-expansive.

Proof. It follows by de�nitions and the previous Lemma.

Corollary 5.5.10. The example of Section 5.3 is a robustly 2-expansive C2 di�eomorphism.

Proof. By the construction, the di�eomorphism is C∞. It is Ω-stable because the non-wandering

set consists of a hyperbolic repeller and a hyperbolic attractor and there are no cycles. It only

rests to note that the tangencies are quadratic because in local charts stable manifolds are

straight lines and unstable manifolds are circle arcs.





Chapter 6

Expansive �ows

Let us start explaining the meaning of expansiveness of �ows, from a kinematic viewpoint,

discussing a well known physical example. Consider the di�erential equation of a simple pen-

dulum: θ̈ + sin(θ) = 0. It is known since Galileo Galilei that the period of the oscillations is

almost constant if the amplitude is small. But, if T (θ0) is the period of an oscillation of am-

plitude θ0 it can be proved that T is strictly increasing for θ0 ∈ [0, π) (see for example [12] for

a proof). Consider two close initial positions of the pendulum with vanishing initial velocities.

Since the periods of the oscillations are di�erent, we have that the solutions will be separated

at some time. This is the meaning of kinematic expansiveness.

A key point for a pendulum clock as a practical timekeeper is that this separation time

is large. In fact, it is easy to see that the separation is linear in time. This is a special

feature of kinematic expansiveness, they are not so chaotic as a system with exponential error

propagation.

If we consider the usual change of variables x = θ and y = θ̇, we can transform the equation

of the pendulum into a �rst order di�erential equation in the plane. Consider two periodic

solutions γ1 and γ2 bounding an annulus A in the plane. If φ : R × A → A is the action of R
on A induced by the pendulum equations we have our �rst example of a kinematic expansive

�ow on a compact surface. Precise de�nitions are given in Section 6.1.

The above considerations are related with the stability (or unstability) of trajectories in

the sense of Lyapunov. In dynamical systems, another fundamental concept is the structural

stability due to Andronov and Pontryagin. A system is structurally stable if there is a neigh-

borhood of the system (in a speci�ed topology) such that every system of this neighborhood

has an equivalent behavior. In the discrete time case, two di�eomorphisms f, g of a manifoldM

are equivalent or conjugated if there is a homeomorphism h : M → M such that f ◦ h = h ◦ g.
In the continuous time case, one can say that two �ows φ and ψ are conjugated if there is

a homeomorphism h as before such that φt ◦ h = h ◦ ψt for all t ∈ R. This concept is very

restrictive, because if there is a closed trajectory then its period should be preserved under
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perturbations. But this is impossible because slightly changing the velocities of the system one

obtains a small perturbation (on any reasonable topology) and the periods of the perturbed

system are di�erent. Therefore, we must consider the concept of topological equivalence. Two

�ows are topologically equivalent if there is a homeomorphism that preserves trajectories and

orientations. If the homeomorphism is the identity of the phase space we have that each �ow

is a (global) time change of the other. It is also called a reparametrization of the �ow.

If one is allowed to change the velocities of single trajectories, the distance between two

whole orbits can be measured with the Fréchet distance. If α, β : R→ X are continuous curves

on a metric space (X, dist), then the Fréchet or geometric distance between the curves is

distF (α, β) = inf
h

sup
t∈R

dist(α(t), β(h(t))),

where h : R → R varies in the set of increasing homeomorphisms of R. This takes us to the

concept of geometric expansiveness, that is similar to kinematic expansiveness but allowing

time reparametrizations of trajectories. This concept was �rst considered in the literature by

Anosov to prove the structural stability of now called Anosov �ows.

Later, Bowen and Walters introduced a de�nition of expansive �ow, see [17], that on arbi-

trary compact metric spaces allowed them to prove some properties shared with Anosov �ows.

Their de�nition is of a geometric nature, that is, they require that trajectories are separated

even allowing time changes of single orbits. In [17] it is noticed that kinematic expansiveness

is not enough in order to recover results of hyperbolic �ows. In the introduction of cited paper

they consider a �ow topologically equivalent with the pendulum system described above. Some

of the results in [17] were generalized in [66] considering di�erent families of reparametrizations

and acting groups.

A di�erent and very interesting kind of expansiveness was discovered by Gura. In [40],

he proved that the horocycle �ow of a surface with negative curvature is positive and negative

(kinematic) separating, his de�nition requires to separate every pair of points in di�erent orbits.

He also proved a remarkable result: every global time change of such �ow is positive and negative

kinematic separating. It is known that horocycle �ow is not geometric expansive.

The aim of this paper is to study kinematic expansiveness. Examples and basic properties

are mainly stated on compact surfaces. A special feature of kinematic expansiveness is the

non-invariance under global time changes. Therefore we also consider the de�nition of strong

kinematic expansiveness requiring that every global time change must be kinematic expansive.

A natural question is: why call it strong kinematic and not weak geometric? The answer can

be found in the following example. Consider X a vector �eld in a two-dimensional torus T2

generating an irrational �ow. Take a non-negative map ρ with just one zero at p ∈ T2. De�ne

the vector �eld Y = ρX and let φ be its associated �ow. As we will see, φ and its global

time changes are kinematic expansive. The separation of trajectories is not geometric because
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generic orbits are parallel straight lines.

This chapter is organized as follows.

Section 6.1. We de�ne and state the basic properties of expansive and separating �ows in

the kinematic, strong kinematic and geometric versions. Examples are given to analyze the

relationship between the de�nitions.

Section 6.2. We consider �ows on compact surfaces. We prove that on surfaces every

geometric separating �ow is geometric expansive (i.e. k∗-expansive in the sense of Komuro

[69]). We also show that a �ow on a surface is strong kinematic expansive if and only if it is

strong separating; and also equivalent with: its singularities are of saddle type and the union

of the separatrices is dense in the surface.

Section 6.3. We study the kinematic expansiveness of suspension �ows. We found a dynam-

ical characterization of the topology of compact subsets of the real line related with kinematic

expansive suspensions. We give a characterization of arc homeomorphisms admitting a kine-

matic expansive suspension. We prove that the only C1 di�eomorphism of an interval admitting

a kinematic expansive suspension is the identity. A similar study is done for circle homeomor-

phisms and di�eomorphisms.

Section 6.4. We consider kinematic expansive �ows of surfaces. We study the relationship

between singularities and kinematic expansiveness in the disc and in the annulus. We show

that every compact surface admits a kinematic expansive �ow.

Section 6.5. We prove that hyper-expansive �ows consist only in a �nite number of singular

points.

6.1 Hierarchy of expansive �ows

In this section we present the main de�nitions. Let (X, dist) be a compact metric space and

φ : R × X → X be a continuous �ow. We say that p ∈ X is a singularity or an equilibrium

point of φ if φt(p) = p for all t ∈ R. To understand any de�nition of expansive �ow one must

consider the following simple fact.

Remark 6.1.1. It holds that if there is at least one non-singular point x ∈ X then for all δ > 0

there exists s ∈ R, such that y = φs(x) 6= x and for all t ∈ R, dist(φt(x), φt(y)) < δ. Moreover,

the value of s may be as small as we want.

Then, if we are going to de�ne a notion of expansive or separating �ow we must take care of

points in the same orbit. In the subject of expansive �ows we consider the hierarchy shown in

Table 6.1. The terms kinematic and geometric �rst appear in the literature of expansive systems

(to our best knowledge) in [24] (page 138). De�nitions in the left column of the table separate

every pair of points not being in the same local orbit, and the ones in the right separate points in
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Geometric Expansive ⇒ Geometric Separating

⇓ ⇓
Strong Kinematic Expansive ⇒ Strong Separating

⇓ ⇓
Kinematic expansive ⇒ Separating

Table 6.1: Hierarchy of expansive �ows

di�erent global orbits. Strong expansiveness deals with time changes of the whole �ow and the

geometric notions allows time changes of single orbits. As the reader will see, the implications

indicated by the arrows are easy to prove. Now we give the precise de�nitions, examples and

counterexamples showing that no arrow in the table can be reversed in the general setting of

compact metric spaces. We also state some basic properties.

6.1.1 Kinematic expansive �ows

Let us start with the main notion of the present chapter.

De�nition 6.1.2. We say that φ is kinematic expansive if for all ε > 0 there exists δ > 0

such that if dist(φt(x), φt(y)) < δ for all t ∈ R then there exists s ∈ R such that |s| < ε and

y = φs(x).

In [66] kinematic expansiveness is considered with the name {id}-expansiveness. This means

that the only reparametrization allowed is the identity of R. This de�nition was also mentioned

in (the �rst section of) [17].

Two continuous �ows φ : R×X → X and ψ : R× Y → Y are said to be equivalent if there

exists a homeomorphism h : X → Y such that φt = h−1 ◦ ψt ◦ h for all t ∈ R.

Remark 6.1.3. Clearly, kinematic expansiveness is invariant under �ow equivalence, i.e., it

does not depend on the metric de�ning the topology of X.

A continuous �ow ψ : R×X → X is topologically equivalent with φ : R× Y → Y if there is

a homeomorphism h : X → Y such that for each x ∈ X the orbits φR(h(x)) and ψR(x) and its

orientations coincide. If in addition, the homeomorphism h is the identity of X, we say that φ

is a time change of ψ.

The following example is topologically equivalent with the pendulum system (restricted to an

annulus as mentioned above) and shows that a time change can destroy kinematic expansiveness.

Example 6.1.4 (Periodic band). Consider the annulus in the plane

A = {(x, y) ∈ R2 : x2 + y2 ∈ [1, 4]}
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bounded by circles of radius 1 and 2. A �ow φ on A can be de�ned by the equation

(ẋ, ẏ) =
1√

x2 + y2
(−y, x).

The solutions are circles as shown in Figure 6.1. It is easy to see that this �ow is kinematic

expansive (there is a proof in Example 2 of [66] page 84). The equation (ẋ, ẏ) = (−y, x) de�nes

Figure 6.1: Periodic orbits in the annulus.

a time change of φ that is not kinematic expansive because the angular velocities are constant.

Remark 6.1.5. At the end of De�nition 6.1.2 above, we required that the points x and y are

in a orbit segment of small time. Since our phase space is compact, this segment has a small

diameter too. Notice that the converse is true if there are no singularities, i.e., orbit segments

of small diameter are de�ned by small times. But if there is a singularity accumulated by regular

orbits this is no longer true as the reader can verify, just apply the continuity of the �ow at the

singular point.

In spite of this remark we will show that if we require in De�nition 6.1.2 that x and y are

in a orbit segment of small diameter (instead of small time) we obtain an equivalent de�nition.

Let us �rst introduce another distance in X by

distφ(x, y) = inf{diam(φ[a,b](z)) : z ∈ X, [a, b] ⊂ R, x, y ∈ φ[a,b](z)}

if x, y are in the same orbit and distφ(x, y) =∞ in other case. Of course, this metric will de�ne

a di�erent topology on X if X is not just a periodic orbit.

Proposition 6.1.6. A �ow φ is kinematic expansive if and only if for all β > 0 there exists

δ > 0 such that if dist(φt(x), φt(y)) < δ for all t ∈ R then distφ(x, y) < β.

Proof. (⇒) Consider β > 0 and take ε > 0 such that dist(φt(x), x) ≤ β for all x ∈ X and

t ∈ [−ε, ε]. By hypothesis, there exists δ such that if dist(φt(x), φt(y)) < δ for all t ∈ R then

there is s ∈ R such that |s| < ε and φs(x) = y. Then distφ(x, y) < β and the proof ends.

(⇐) First we �x ε > 0. Take any β1 > 0 and by hypothesis there exists δ1 such that

if dist(φt(x), φt(y)) < δ1 for all t ∈ R then distφ(x, y) < β1. It is easy to see that there is



80 6.1. HIERARCHY OF EXPANSIVE FLOWS

just a �nite number of orbits with diameter smaller than δ1/2. Now take β2 > 0 such that if

diam(φR(p)) < β2 then p is a singular point. For this value of β2 there is an expansive constant

δ2 (by hypothesis).

Take ρ < δ2/2 and denote by Sing the set of singular points of the �ow. It is easy to see that

for all x ∈ Bρ(Sing) = ∪
q∈SingBρ(q), x /∈ Sing, there exists t0 ∈ R such that φt0(x) /∈ Bρ(Sing).

We will prove that there is β3 ∈ (0, β2) such that if x /∈ Bρ(Sing) and diam(φ[0,t](x)) < β3 then

|t| < ε. By contradiction suppose there exists xn → z, xn /∈ Bρ(Sing) and tn → ∞ such that

diam(φ[0,tn](xn))→ 0. This implies that z ∈ Sing which is a contradiction.

Finally we claim that δ3 is an expansive constant associated to ε. In order to prove it,

suppose that dist(φt(x), φt(y)) < δ3 for all t ∈ R. We can assume that x is not a singular point

and then there exists t0 ∈ R such that φt0(x) /∈ Bρ(Sing). Then

dist(φt(φt0(x)), φt(φt0(y))) < δ3

and the hypothesis implies that there is s ∈ R such that φs(φt0(x)) = φt0(y) and also the

diameter of φ[0,s](φt0(x)) is smaller than β3. Since φt0 /∈ Bρ(Sing) we have that |s| < ε and then

φs(x) = y with |s| < ε.

6.1.2 Strong kinematic expansive �ows

As we saw in Example 6.1.4 kinematic expansiveness is not an invariant property under time

changes of �ows. Therefore the following de�nition is natural.

De�nition 6.1.7. A �ow is said to be strong kinematic expansive if every time change is

kinematic expansive.

Example 6.1.8. Consider an irrational �ow (every orbit is dense) on the two dimensional

torus T 2 = R2/Z2 with velocity �eld X. Take any non-negative smooth function f with just

one zero at some point p in the torus. Denote by φ the �ow generated by the vector �eld fX.

Such �ow is illustrated in Figure 6.2. To show that φ is strong kinematic expansive consider

any time change of the �ow. The idea is the following. Take two points being in di�erent local

orbits and wait until one of them is very close to p. By continuity this point will stay close to

p for a long time while the other point will be separated. This argument will be formalized later

in Theorem 6.2.8.

Remark 6.1.9. The periodic �ow in the annulus shown in Example 6.1.4 is kinematic expansive

but not in the strong sense.
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Figure 6.2: Irrational �ow in the torus with a fake saddle.

6.1.3 Geometric expansive �ows

The idea of geometric expansiveness is that the trajectories separate even if one allows a time

change of the trajectories. Denote by H+ the set of all increasing homeomorphisms h : R→ R
such that h(0) = 0. Such homeomorphisms will be called time reparametrizations.

De�nition 6.1.10. We say that φ is geometric expansive if for all β > 0 there exists δ > 0

such that if dist(φh(t)(x), φt(y)) < δ for all t ∈ R with h ∈ H+ then x, y are in a orbit segment

of diameter smaller than β.

In the literature these �ows are simply called expansive. In the case of regular �ows, i.e.

without equilibrium points, it is equivalent with the one given by R. Bowen and P. Walters in

[17]. For the general case (i.e. with or without singular points) the de�nition is equivalent with

the given by M. Komuro in [69] (see [5] for a proof). Examples of geometric expansive �ows

are suspensions of expansive homeomorphisms [17], Anosov �ows, the Lorenz attractor [69] and

singular suspensions of expansive interval exchange maps [5].

Remark 6.1.11. It is easy to see that Examples 6.1.4 and 6.1.8 are not geometric expansive.

6.1.4 Separating �ows

The term separating was �rst used in [39,40]. This kind of expansiveness only separates points

in di�erent global orbits.

De�nition 6.1.12. A �ow φ is separating if there is δ > 0 such that if dist(φt(x), φt(y)) < δ

for all t ∈ R then y ∈ φR(x).

Example 6.1.13 (Minimal separating �ow in the torus). In [29] it is de�ned a continuous (non-

smooth) time change of an irrational �ow on the two dimensional torus T 2 with the following

property: the set {(φt(x), φt(y)) : t ≥ 0} is dense in T 2 × T 2 whenever x and y are on di�erent

orbits in T 2. Clearly, it implies that the �ow is separating. We were not able to decide if this

example is kinematic expansive or not.



82 6.1. HIERARCHY OF EXPANSIVE FLOWS

The following is an easy example showing that there are separating �ows that are not

kinematic expansive.

Example 6.1.14 (A separating �ow in the Möebius Band). Consider the map f : [−1, 1] →
[−1, 1] given by f(x) = −x and consider T (x) = 1 + x2 for all x ∈ [−1, 1]. It is easy to see

that the suspension �ow of f with return time T is a separating �ow in the Möebius band. See

Figure 6.3.

b

c

a

c

b

a

Figure 6.3: A separating �ow in the Moebius band.

Remark 6.1.15. The previous example in the Moebius band is not kinematic expansive. Con-

sider two points as c and b in Figure 6.3. They are in the same orbit but not in a small orbit

segment. Taking them close to the point a we contradict kinematic expansiveness.

Let us give some general remarks that hold for every notion of expansiveness considered in

this article. Recall that the de�nition of separating �ow is the weaker in Table 6.1.

De�nition 6.1.16. A singularity p of φ is φ-isolated if there is δ > 0 such that for all x ∈ Bδ(p),

x 6= p, there is t ∈ R such that φt(x) /∈ Bδ(p).

Remark 6.1.17. If φ is separating and p ∈ X is a singular point of the �ow then p is φ-isolated.

In particular, the set of singular points is �nite.

6.1.5 Strong separating �ows

De�nition 6.1.18. A �ow is strong separating if every time change is separating.

The following is a remarkable example.

Example 6.1.19. In [40] it is shown that the horocycle �ow on a surface of negative curvature

is strong separating. In fact, Gura shows that the separation of trajectories occurs in positive

and in negative times.

Remark 6.1.20. The example shown in [29] (recall Example 6.1.13) is separating but it is not

strong separating.
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6.1.6 Geometric separating �ows

De�nition 6.1.21. A �ow φ is said to be geometric separating if there exists δ > 0 such that

if dist(φh(t)(x), φt(y)) < δ for all t ∈ R and some h ∈ H+ then y ∈ φR(x).

To study geometric separating �ows we introduce a natural de�nition for dynamics with

discrete time.

De�nition 6.1.22. We say that a homeomorphism f : Y → Y is separating1 if there is δ > 0

such that if dist(fn(x), fn(y)) < δ for all n ∈ Z then there is m ∈ Z such that y = fm(x).

Proposition 6.1.23. A suspension is geometric separating if and only if the suspended home-

omorphism is separating.

Proof. Is similar to the proof of Theorem 6 in [17].

Now we give an example showing that separating homeomorphisms may not be expansive.

Example 6.1.24. Let X be the subset of the sphere R2 ∪ {∞} given by

X = {∞} ∪ {(n, 0) : n ∈ Z} ∪ {(n,±1/m) : n ∈ Z,m ∈ Z+, |n| ≤ m}.

De�ne f : X → X as f(∞) = ∞, f(n, 0) = (n + 1, 0), f(n,±1/m) = (n + 1,±1/m) if n < m

and f(m,±1/m) = (−m,∓1/m). It is easy to see that f is a homeomorphism. It is not

expansive because the points (0, 1/m) and (0,−1/m) contradicts expansiveness for arbitrary

small expansive constants. It is a separating homeomorphism because these are the only points

contradicting expansiveness and they are in the same orbit. Therefore, the suspension of this

example is not geometric expansive but it is geometric separating.

Remark 6.1.25. We also have that the suspension �ow in the previous example is strong

separating but it is not strong kinematic expansive.

6.1.7 Summary of counterexamples

We have de�ned six variations of expansive and separating �ows on compact metric spaces. In

the following table we recall the counterexamples in the hierarchy:

As we can see in the diagram, the six de�nitions are di�erent in the general context of

continuous �ows on compact metric spaces.

1In [39] Gura calls separating to what we call expansive homeomorphism. We use the expression

separating homeomorphism with a di�erent meaning.
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Geometric Expansive
:

Example 6.1.24
Geometric Separating

⇑� Examples 6.1.8 and 6.1.19 ⇑� Examples 6.1.8 and 6.1.19

Strong Kinematic Expansive
:

Example 6.1.24
Strong Separating

⇑� Example 6.1.4 ⇑� Example 6.1.13

Kinematic expansive
:

Example 6.1.14
Separating

Table 6.2: Diagram of counterexamples

6.2 Hierarchy of expansiveness on surfaces

In this section we will show that the hierarchy of expansive �ows presented in Table 6.1 is

simpler, see Table 6.2, if we assume that the phase space is a compact surface. The �rst

Geometric Expansive ⇔ Geometric Separating

⇓
Strong Kinematic Expansive ⇔ Strong Separating

⇓
Kinematic expansive

⇓
Separating

Table 6.3: Hierarchy of expansive �ows of compact surfaces

equivalence in Table 6.3 is given in Theorem 6.2.7 and the second one is proved in Theorem

6.2.8. To prove these results we will �rst study the local behavior near singular points and time

changes of �ows with wandering points.

6.2.1 Isolated singular points

In this section we study the local behavior of singularities of separating �ows of surfaces. Let

φ : R× S → S be a continuous �ow on a compact surface S. As mentioned in Remark 6.1.17,

every singular point is φ-isolated if φ is separating.

Let us introduce some de�nitions. A regular orbit γ is a separatrix of p ∈ Sing if for x ∈ γ
it holds that limt→+∞ φt(x) = p (unstable separatrix ) or limt→−∞ φt(x) = p (stable separatrix ).

A singular point is said to be a (multiple) saddle if it presents a �nite number of separatrices.

We say that p ∈ Sing is an n-saddle if p is a multiple saddle of index 1− n (i.e. if it has n+1
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stable separatrices).

Recall that a singular point p is (Lyapunov) stable if for all ε > 0 there is δ > 0 such that

if dist(x, p) < δ then dist(φt(x), p) < ε for all t ≥ 0. We say that p is asymptotically stable if

it is stable and there is δ0 > 0 such that if dist(x, p) < δ0 then φt(x) → p as t → +∞. If p is

asymptotically stable we say that p is a sink. We say that p is a source if it is a sink for φ−1

de�ned as φ−1
t = φ−t.

Let us recall from [44] some well known facts and notations relative to the Poincaré-Bendixon

Theory. Let p ∈ Sing be a φ-isolated singular point. Consider a Jordan curve C bounding a

neighborhood U of p such that if φR(x) ⊂ closU then x = p. If for some y ∈ C it holds

that φR+(y) ⊂ U then we say that φR+(y) is a stable separatrix arc (or a base solution in

the terminology of [44]). Since p is φ-isolated, we have that limt→∞ φt(y) = p. In the same

conditions, if φR−(y) ⊂ U then this orbit segment is called unstable separatrix arc.

Suppose that y1, y2 ∈ C determine two separatrix arcs. An open subset S bounded by p,

the separatrix arcs of y1 and y2, and an arc in C from y1 to y2 is called a sector. Notice that

each pair of separatrix arcs determines two sectors.

A sector σ is hyperbolic if contains no separatrix arc. A sector σ determined by two stable (or

two unstable) separatrix arcs is called parabolic if it contains no unstable (or stable) separatrix

arc. With reference to [44], elliptic sectors needs not to be consider because p is φ-isolated.

The number of hyperbolic sectors is �nite by Lemma 8.2 in [44].

Proposition 6.2.1. Assume that U is an isolating neighborhood of p ∈ Sing bounded by a

Jordan curve C as above. If the closures of all the hyperbolic sectors are deleted from U then

the remaining set is either:

1. empty and p is a multiple saddle,

2. U and p is a sink or a source or

3. the union of a �nite number of pairwise disjoint parabolic sectors.

Proof. See Lemma 8.3 of [44].

In Figure 6.4 the three possible cases of Proposition 6.2.1 are illustrated.

De�nition 6.2.2. Let R be an embedded disc in S and de�ne a rectangle K = [−1, 1]× [0, 1] ⊂
R2. We say that:

1. R is a regular �ow box if φ restricted to R is topologically equivalent with the constant

vector �eld X(x, y) = (1, 0) restricted to K,

2. R is a parabolic �ow box if φ restricted to R is topologically equivalent with X(x, y) =

±(x, y) restricted to K,

3. R is a hyperbolic �ow box if φ restricted to R is topologically equivalent with X(x, y) =

(x2 + y2, 0) restricted to K.
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Figure 6.4: Examples of isolated singularities. Left: a multiple saddle. Center: a sink. Right:

a combination of hyperbolic and parabolic sectors.

In the last two cases we say that R is a singular �ow box.

Proposition 6.2.3. If a �ow φ on a compact surfaces S presents a �nite number of isolated

singularities then S = ∪ni=1Ri where:

• each Ri is a regular or singular �ow box and

• if i 6= j then Ri ∩Rj ⊂ ∂Ri ∩ ∂Rj.

Proof. It follows by Proposition 4.3 of [41] and Proposition 6.2.1 above.

6.2.2 Time changes and wandering points

Let φ be a continuous �ow on a compact surface S.

Theorem 6.2.4. If φ is a continuous �ow on a compact surface S and φ has wandering points

then there is a time change of φ that is not separating.

Proof. If φ has a non-isolated singular point then φ is not separating. Therefore, we will assume

that all the singularities are isolated.

Let p ∈ S be a wandering point for φ. Then there is a compact arc l transverse to the �ow

having p in its interior such that φt(l)∩ l = ∅ for all t 6= 0. Let L = φR(l). Consider a covering

of boxes R1, . . . , Rn, S = ∪ni=1Ri, as in Proposition 6.2.3. Divide l with two interior points in

three sub-arcs l = l1∪l2∪l3 in such a way that φR(l2) intersects each ∂Ri only at the transversal

part. It is possible because there is a �nite number of �ow segments in the boundary of the

boxes Ri and φt(l) ∩ l = ∅ for all t 6= 0. We will show that there is a time change ψ of φ such

that for all δ > 0 there are x, y ∈ l2, x 6= y, such that dist(ψt(x), ψt(y)) < δ for all t ∈ R.
Fix a box Ri such that φR(l2) ∩ Ri 6= ∅. Assume �rst that Ri is a regular �ow box. The

boundary of Ri is the union of two transversal arcs a and b and two orbit segments. Suppose

that the �ow enters to the box through a. Given two points x, y ∈ a the sub-arc of a with
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Figure 6.5:

extreme points x, y will be denoted by [x, y]. Call x1 and x2 the extreme points of a as shown

in Figure 6.5.

Take z1, z2 ∈ a such that [z1, z2] ∩ φR(l2) = ∅. Since Ri is a regular �ow box there is

a homeomorphism h : Ri → K = [−1, 1] × [0, 1] taking orbit segments in Ri into horizontal

segments in K. For each p ∈ Ri denote by γ(p) the preimage by h of the vertical segment

through h(p). Each γ(p) is a compact arc transversal to the �ow. Consider a time change ψ

such that:

1. if x ∈ [x1, z1] then ψt(x) ∈ γ(φt(x1)) for all t ∈ [0, T1] where φT1(x1) ∈ b and φ[0,T1](x1) ⊂ Ri,

2. if x ∈ [z2, x2] then ψt(x) ∈ γ(φt(x2)) for all t ∈ [0, T2] where φT2(x2) ∈ b and φ[0,T2](x2) ⊂ Ri.

Now consider a hyperbolic box Ri. Again denote by a = [x1, x2] ⊂ ∂Ri the transversal part

of the boundary of Ri where the �ow enters to the box. Consider ui, vi ∈ a, for i ∈ Z+, such

that u1 < v1 < u2 < v2 < . . . and [ui, vi] ∩ φR(l2) = ∅ for all i = 1, 2, 3, . . . . Denote by p ∈ ∂Ri

the singular point in the boundary of Ri. Again, with a homeomorphism h : Ri → K we have

a transversal (vertical) foliation on Ri \ {p}. Inside Ri consider three �ow boxes A1, B1, C1

bounded by orbit segments and vertical arcs as in Figure 6.6. Also consider the hyperbolic �ow

R i

v1
v1

A

B C

p

u

x

x

1

1

1

1

1

2

i
R

1

x

x4

3

’

Figure 6.6:
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box R1
i ⊂ Ri as in the �gure. De�ne

Ta = sup{t > 0 : φ[0,t](x1) ⊂ Ri},
Tb = sup{t > 0 : φ[0,t](x2) ⊂ B1},
Tc = sup{−t > 0 : φ[t,0](x3) ⊂ C1},

where x3 is the vertex of the box Ri shown in Figure 6.6. Consider the time change ψ satisfying:

1. if x ∈ [x1, u1] then ψt(x) ∈ γ(φt(x1)) for all t ∈ [0, Ta],

2. if x ∈ [v1, x2] then ψt(x) ∈ γ(φt(x2)) for all t ∈ [0, Tb],

3. if x ∈ [v′1, x3] then ψ−t(x) ∈ γ(φ−t(x3)) for all t ∈ [0, Tc].

Inside R1
i consider a similar subdivision considering the orbit segments of u2, v2 as in Figure

6.7. Inductively we have a sequence of regular boxes Ak, Bk, Rk and hyperbolic boxes Ri
k.

R i

p

x

x

1

2 x

x4

3

A

B C

u
v

2

2

2

2 2

Figure 6.7:

On each Ri
k assume that ψ satis�es the corresponding conditions as in Ri

1. Assume that

diam(Rk
i )→ 0 as k →∞.

On parabolic boxes, assume that ψ coincides with φ.

In this way we obtain a (global) �ow ψ that is a time change of φ and ψ is not separating

because on each box Ri ∩ φR(l2) the �ow ψ preserves the vertical foliation of the box.

6.2.3 Geometric separating and geometric expansive �ows on surfaces

Let us recall that in [5] (see Theorem 6.7) it is proved that a �ow on a compact surface S that

is not a torus, is geometric expansive 2 if and only if the set of singular points is �nite and

there are neither wandering points nor periodic orbits. We do not consider singular points as

periodic orbits.

Lemma 6.2.5. If φ is a strong separating �ow on a compact surface then φ has no periodic

orbits.

2Notice that in cited paper expansive means geometric expansive in the present terminology.
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Proof. By Theorem 6.2.4 we have that there are no wandering points. Therefore, if γ is a

periodic orbit, every point close to γ has to be periodic (this can be easily proved by considering

a local cross section through γ and its �rst return map). But if a periodic orbit is accumulated

by periodic orbits then there is a time change of φ that is not strong separating. Therefore, a

strong separating �ow cannot have periodic orbits.

Lemma 6.2.6. The torus does not admit geometric separating �ows.

Proof. Assume by contradiction that φ is a geometric separating �ow on the torus. We know by

Theorem 6.2.4 and Lemma 6.2.5 that φ has neither wandering points nor periodic orbits. Since

φ is separating, we have that the singular points are φ-isolated. Applying Proposition 6.2.1

and the fact that there are no wandering points we have that every singular point is of saddle

type, that is because there are neither sources, sinks nor parabolic sectors. Since the Euler

characteristic of the torus equals zero we have that singular points are 0-saddles (sometimes

called fake saddles). Consider another �ow ψ that removes the singularities of φ, i.e., satisfying:

1) ψ has no singular points and 2) every orbit of φ is contained in a orbit of ψ. It is known

that under these conditions (see for example Lemma 4.1 in [5]) ψ is an irrational �ow, i.e. a

suspension of an irrational rotation of the circle. But now it is easy to see that φ cannot be

geometric separating. This contradiction proves the lemma.

Theorem 6.2.7. A continuous �ow on a compact surface is geometric separating if and only

if it is geometric expansive.

Proof. We only have to prove the direct part because the converse holds on arbitrary compact

metric spaces. Therefore, consider a geometric separating �ow φ. By Theorem 6.2.4 we have

that φ has no wandering points. By Lemma 6.2.6 we know that S is not the torus and by

Lemma 6.2.5 we have that φ has no periodic orbits. Now, recalling that the set of singular

points is �nite we apply Theorem 6.7 in [5] to conclude that φ is geometric expansive.

6.2.4 Strong kinematic expansive and strong separating �ows on sur-

faces

In this section we prove the second equivalence of Table 6.3.

Theorem 6.2.8. Let S be a compact surface and let φ be a continuous �ow on S. The following

statements are equivalent:

1. φ is strong kinematic expansive,

2. φ is strong separating,

3. the singular points are saddles and the union of their separatrices is dense in S.
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Proof. (1→ 2). It holds in the general setting of compact metric spaces.

(2 → 3). By Theorem 6.2.4 we have that φ has no wandering points. Therefore there are

no parabolic sectors and singularities are of saddle type. By Lemma 6.2.5 we have that strong

separating �ows have no periodic orbits. So, as in Proposition 4 of [5] we conclude that the

union of the separatrices is dense in S given that φ is strong separating. This proves that (2)

implies (3).

(3 → 1). By Theorems 6.1 and 5.3 in [5] we only have to consider the case where S is a

torus and the �ow is minimal with a �nite number of 0-saddles. Let γ be a global transversal

to the �ow. Denote by T the return time function of γ that is de�ned in γ \ A where A is a

�nite set. In the points of A the map T diverges. Now take u 6= v in γ \ A. Let f : γ → γ be

the extended return map (notice that the points in A does not return to γ but this map can

be extended by continuity to a minimal rotation f). Since A is �nite, there is δ > 0 such that

if dist(u, v) < δ, a ∈ A and fnk(u)→ a then fnk(v)→ b with b /∈ A. This implies that the �ow

will separate u and v (see the techniques of Proposition 6.3.1 below).

Remark 6.2.9. The only surface admitting a strong kinematic expansive �ow that is not geo-

metric expansive is the torus. Therefore, applying Theorem 6.5 in [5], we have that a compact

surface admits a strong kinematic expansive �ow if and only if it is obtained from the torus

attaching h ≥ 0 handles, b ≥ 0 boundaries and c ≥ 0 cross-cups.

Remark 6.2.10. Every strong kinematic expansive �ow of a compact surface is topologically

equivalent with a C∞ �ow. This can be proved with Gutierrez's smoothing results as done in

[5] for the geometric expansive case.

De�nition 6.2.11. If φ is a strong kinematic expansive �ow we say that the expansive con-

stant is uniform if for all β > 0 there is δ > 0 such that if ψ is a time change of φ and

dist(ψt(x), ψt(y)) < δ for all t ∈ R then x, y are in a orbit segment of diameter smaller than β.

Uniformity of the expansive constant means that there is an expansive constant working for

every time change.

Remark 6.2.12. From the arguments above we have that on surfaces every strong kinematic

expansive �ow has a uniform expansive constant.

6.3 Suspension �ows

Let φ be a continuous �ow without singularities de�ned on a compact metric space X. We

say that a compact subset l ⊂ X is a local section around x if x ∈ l, there is τ > 0 such that

l∩φ[−τ,τ ](y) = {y} for all y ∈ l and x is an interior point of φ(−τ,τ)(l). A compact subset l ⊂ X

is a global section for φ if for all x ∈ l there is a neighborhood U of x such that U ∩ l is a local
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cross section in the sense of Whitney [135] (see also [17]) and every orbit cuts l. If φ admits a

global section l ⊂ X we can consider the �rst return map f : l → l satisfying f(x) = φt(x) if

t > 0 and φ(0,t](x) ∩ l = {f(x)} for all x ∈ l. In this case we say that φ is a suspension of f .

6.3.1 Kinematic expansive suspensions

The expansiveness of a homeomorphism is known to be equivalent with the geometric expan-

siveness of each suspension (see [17]) and also to the kinematic expansiveness of a suspension

of constant time (see [66]).

Here we consider the kinematic expansiveness of a suspension with arbitrary (continuous)

return time.

Proposition 6.3.1. Suppose φ is a suspension of f : l → l and let Tk : l → R be such that for

all k ∈ Z and x ∈ l, Tk(x) < Tk+1(x) and φTk(x)(x) = fk(x). Then the following statements are

equivalent:

1. The �ow φ is kinematic expansive.

2. There is δ > 0 such that if dist(φt(x), φt(y)) < δ for all t ∈ R with x, y ∈ l then x = y.

3. There is ρ > 0 such that if x, y ∈ l, dist(fn(x), fn(y)) < ρ and |Tn(x)− Tn(y)| < ρ for all

n ∈ Z then x = y.

Proof. (1 → 2). Let ε > 0 be such that if x ∈ l and 0 < |s| < ε then φs(x) /∈ l. Since φ is

kinematic expansive there is an expansive constant δ > 0 associated to ε. Take x, y ∈ l such
that dist(φt(x), φt(y)) < δ for all t ∈ R. Then there exists s ∈ (−ε, ε) such that y = φs(x). But

this implies that s = 0 and x = y.

(2 → 3). Let T ∗ = max{T1(x) : x ∈ l}. The continuity of the �ow implies that there exists

δ′ > 0 such that:

if dist(x, y) < δ′ then dist(φt(x), φt(y)) < δ for all t ∈ [0, T ∗]. (6.1)

By the triangular inequality we have that:

dist(φTk(x)(x), φTk(x)(y)) ≤ dist(fk(x), fk(y)) + dist(φTk(x)(y), φTk(y)(y)) (6.2)

for all x, y ∈ l and k ∈ Z. We will show that ρ = δ′/2 satis�es the thesis. Assume that x, y ∈ l,
dist(fn(x), fn(y)) < ρ and |Tn(x) − Tn(y)| < ρ for all n ∈ Z. By inequality (6.2) we have

that dist(φTk(x)(x), φTk(x)(y)) ≤ δ′ for all n ∈ Z. Now, applying condition (6.1) we have that

dist(φt(x), φt(y)) < δ for all t ∈ R and therefore, x = y because x, y ∈ l.
(3 → 1) Let ρ > 0 be the constant given in item (3). Given ε > 0 consider δ > 0 such that

if dist(x, y) < δ with x ∈ l and y ∈ X then

there is a unique s ∈ R such that |s| < ε, |s| < ρ and φs(y) ∈ l ∩Bρ(x). (6.3)
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This value of s will be denoted as sx(y) and we de�ne the projection πx : Bρ(x) → l as

πx(y) = φsx(y)(y). We will show that δ is an expansive constant associated to ε. Suppose

that dist(φt(x), φt(y)) < δ for all t ∈ R. Without loss of generality we assume that x ∈ l.

De�ne the sequence yn = φTn(x)(y) for n ∈ Z. We have that fn(y0) = πfn(x)(yn) and also

dist(fn(x), yn) < δ for all n ∈ Z. By condition (6.3) for each n ∈ Z there is sn such that

|sn| < ρ, φsn(yn) = fn(y0) and dist(fn(x), fn(y0)) < ρ for all n ∈ Z. If we apply our hypothesis

to the points x, y0 ∈ l, noting that |sn| = |Tn(x)− Tn(y0)|, we conclude that x = y0. Therefore

x = φs0(y), and since |s0| < ε by (6.3), the proof ends.

As an application of this result we have that the �ow on Example 6.1.4 (periodic band) is

kinematic expansive. Note that this is a suspension of the identity map of an arc under an

increasing return time function. In the next section we will prove that the interval is the only

connected space whose identity map admits a kinematic expansive suspension.

6.3.2 Suspensions of the identity map

In general topology it is an important task to give intrinsic topological characterizations of

topological spaces. For example, it is known that a compact metric space X is homeomorphic

to the usual Cantor set if and only if it is totally disconnected (every component is trivial)

and perfect (no isolated points). From a dynamical viewpoint it is also possible to characterize

topological spaces. Let us mention, as an example, that a compact surface is a torus if and only

if it admits an Anosov di�eomorphism. Finite sets can be characterized as those admitting a

positive expansive homeomorphism.

In this section we give a dynamical characterization of compact metric spaces that can be

embedded in R. In order to obtain this kind of result we recall a topological characterization

of such spaces.

Theorem 6.3.2. A compact metric space l is homeomorphic to a subset of R if and only if the

following statements hold:

1. the components of l are points or compact arcs,

2. no interior point of an arc-component a is a limit point of l \ a and

3. each point of l has arbitrarily small neighborhoods whose boundaries are �nite sets.

See [113] for a proof.

Theorem 6.3.3. If l is a compact metric space then the following statements are equivalent:

1. the identity map of l admits a kinematic expansive suspension,

2. there is a continuous and locally injective map T : l → R, i.e., there is δ > 0 such that if

0 < dist(x, y) < δ then T (x) 6= T (y) and
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3. l is homeomorphic to a subset of R.

Proof. (1→ 2) The return time map T making the suspension of the identity map of l kinematic

expansive, has to be locally injective by Proposition 6.3.1 (item 3).

(2→ 3) Since l is compact we have that T is a local homeomorphism. Therefore l satis�es

item (3) of Theorem 6.3.2. To prove the �rst item, consider a non trivial component a of l. As

we mentioned, T is a local homeomorphism, therefore a is a compact connected one-dimensional

manifold. If a is not a compact arc, then it must be a circle, but this easily gives us that T

cannot be locally injective. Therefore item (1) holds. The second item of Theorem 6.3.2 follows

again because T is a local homeomorphism.

(3→ 1) Let T : l→ R+ be an embedding of l. Applying Proposition 6.3.1 we have that the

suspension of the identity of l under T is kinematic expansive.

Let Γ be the set of periodic orbits of φ endowed with the relative topology induced by the

Hausdor� distance between compact subsets of X. Recall that

distH(A,B) = inf{ε > 0 : B ⊂ Bε(A), A ⊂ Bε(B)}

is the Hausdor� distance between the compact sets A,B ⊂ X. Let T : Γ → R+ be the period

function de�ned such that T (γ) is the period of the periodic orbit γ. The following proposition

gives another characterization of the suspensions of the previous theorem.

Lemma 6.3.4. If φ is kinematic expansive on a compact metric space then the period function

T is continuous.

Proof. Let γn be a sequence of periodic orbits converging in the Hausdor� distance to a periodic

orbit γ. Let l be a local cross section through a point p ∈ γ. If T (γn) do not converge to T (γ)

then γn, for large n, must meet at least twice to l, say in xn and yn. Therefore, xn and yn

contradict the kinematic expansiveness of φ.

Proposition 6.3.5. Suppose that φ is a kinematic expansive �ow without singularities on a

compact metric space such that every orbit is compact. Then it is a suspension of the identity

map of a compact subset of R.

Proof. By Lemma 6.3.4 and Theorem 6.3.3 we have that every point has a local cross section

homeomorphic to a compact subset of R. Therefore, the connected component of every point

x ∈ X is homeomorphic to an annulus A (possibly reduced to the orbit of x alone). Taking

local cross sections through points in the boundaries of A, we can extend a global section of

A. Therefore, every point admits a compact local cross section l (not necessarily small) such

that φR(l) is an open subset of X. With the techniques of [17] it is easy to prove that φ is a

suspension. Therefore we conclude by Theorem 6.3.3.
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6.3.3 Arc homeomorphisms

In this section we study when a homeomorphism of a compact arc I admits a kinematic expan-

sive suspension. We consider homeomorphisms of class C0 and C1.

Given a continuous �ow φ : R×X → X we say that A ⊂ X is positively invariant if for all

x ∈ A and for all t ≥ 0 it holds that φt(x) ∈ A. Recall that the ω-limit set of x is

ω(x) = {y : ∃tk → +∞ such that φtk(x)→ y as k → +∞}.

Lemma 6.3.6. Let φ be a continuous �ow with a positively invariant annulus A such that

one component of the boundary is a periodic orbit γ, the other component is transversal to the

�ow and the ω-limit set of every point in A is γ. Then φ restricted to A admits a kinematic

expansive time change.

Proof. Consider a global cross section l, as in Figure 6.8, and identify l with the interval [0, 1].

The return map to l is conjugated with f : [0, 1]→ [0, 1] de�ned by f(x) = x/2. Then fn(x) =

x/2n for all n ≥ 0 and x ∈ [0, 1]. De�ne an = fn(1) and bn = fn(1/2 + 1/2n+2). In this way we

have that bn ∈ (an, an+1) for all n ≥ 0. De�ne T : [0, 1]→ R by T (an) = T (1) = T (0) = 1 and

T (bn) = 1 + 1/(n + 1) for all n ≥ 0 and extended by linearity in (an, bn) and (bn, an+1) for all

n ≥ 0. See Figure 6.9.

γ l

Figure 6.8: .

Consider a semi-�ow ψ, a time change of φ with returning time T to the section l. We will

show that ψ is kinematic expansive. Every point in γ is separated from any other outside γ, as

can be easily seen. We now study two cases, taking x, y ∈ l = [0, 1], x 6= y.

Case 1: a1 < x < y ≤ a0. Notice that there exists n0 such that if n ≥ n0 then an+1 < bn <

xn < yn < an, being xn = fn(x) and yn = fn(y). Then for all n ≥ n0 we have that:

T (xn)− T (yn) ≥ (yn − xn)n−1

an+1 − an
=

(
y−x
2n

)
n−1

1/2n+1
= 2(y − x)/n.

And then
∑∞

i=0 T (xi)− T (yi) = +∞ and therefore the points x, y are separated by the �ow ψ.
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T

1

1

Figure 6.9: The return time function T .

Case 2: a0 < x ≤ a1 < y < a2. From the de�nition of T it is easy to see that

T (xn) =
2(a1 − x)

n(1− 1/2n+1)

and

T (yn) =
2(a2 − y)

(n+ 1)(1− 1/2n+2)
.

Let αn = 2(a1−x)
1−1/2n+1 and βn = 2(a2−y)

1−1/2n+2 . Then

T (xn)− T (yn) =
αn
n
− βn
n+ 1

=
αn − βn
n+ 1

− αn
n(n+ 1)

Again we have that
∑∞

n=0 T (xn)− T (yn) = +∞ since αn − βn → 1/2 + 2(y − x) 6= 0.

Recall that for an arc homeomorphism preserving orientation, the periodic points are in

fact �xed points, and given any closed set F of the arc there is an orientation preserving

homeomorphism whose set of �xed points is F . If f reverses orientation we have that there is

a unique �xed point and other periodic points have period 2.

Proposition 6.3.7. A homeomorphism f : I → I admits a kinematic expansive suspension if

and only if the set of periodic points has �nitely many components and the period function is

continuous (i.e. in the reversing orientation case, the �xed point is not accumulated by points

of period 2).

Proof. (⇒) Let us start assuming that f admits a kinematic expansive suspension. Suppose

�rst that f reverses orientation. As we said f has a unique �xed point p. Now, it is easy to

see that x and f(x) contradicts expansiveness if x is a periodic point (of period 2) arbitrarily

close to p. Assume now that there are in�nitely many wandering components. We have that

for all ε > 0 there is a wandering point x such that dist(x, fn(x)) < ε for all n ∈ Z. Consider
a time map T : I → R+. Since it is uniformly continuous we have that for all δ > 0, the value
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of ε can be chosen in such a way that if dist(x, y) < ε then |T (x) − T (y)| < δ. Therefore, the

points x and f(x) contradicts the expansiveness.

(⇐) On each component of �xed points consider an increasing time map. On wandering

points use Lemma 6.3.6.

The smooth case is very restrictive as the following result shows.

Proposition 6.3.8. Assume that f : I → I is a homeomorphism and T : I → R+ is C1. If the

suspension (f, T ) is kinematic expansive then f is the identity and T is strictly increasing or

decreasing.

Proof. Let us assume �rst that f is increasing. By contradiction assume that it is not the

identity, therefore there are two �xed points p, q ∈ I such that for all x ∈ (p, q) we have

that fn(x) → q and f−n(x) → p as n → ∞. Since T is smooth we have that T (y) − T (x) =∫ y
x
T ′(u) du. Therefore, taking x, y ∈ (p, q) arbitrarily close we can easily contradict Proposition

6.3.1.

Assume now that f is decreasing and take the �xed point p of f . If close to p there are

wandering points then we can arrive to a contradiction as in the previous case. The other

possible case is that every point close to p is periodic with period 2. If x is close to p and

y = f(x) it is easy to see that x, y contradicts the expansiveness of the suspension �ow. This

contradiction proves that f(x) = x for all x ∈ I.
Now applying Proposition 6.3.1 we see that T must be increasing or decreasing.

6.3.4 Circle homeomorphisms

Let f : S1 → S1 be homeomorphism of the circle. Recall that if the are no wandering points

then it is conjugated to a rotation. In other case we say that the wandering set of f is �nitely

generated if there is a �nite number of disjoint open arcs a1, . . . , an such that the wandering

set is the union ⋃
j∈Z,i=1,...,n

f j(ai).

In the following Theorem we exclude the case where f is minimal because we have no C0

general answer.

Theorem 6.3.9. A non-minimal circle homeomorphism f : S1 → S1 preserving orientation

admits a kinematic expansive suspension if and only if its wandering set is non-empty and

�nitely generated.

Proof. (⇒) Assume that f admits a kinematic expansive suspension. If f has no wandering

points then it is a rotation, and since it is not minimal, it is a periodic (rational) rotation.
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Now it is easy to see that there are arbitrarily close points with the same period (for the �ow)

contradicting expansiveness. Therefore the wandering set is not empty. The wandering set is

�nitely generated by the arguments in the proof of Proposition 6.3.7.

(⇐) If the the rotation number of f is rational the proof is reduced to Proposition 6.3.7.

Therefore, we will assume that f has irrational rotation number. Also assume that the wan-

dering set is generated by one interval (it is easy to extend the proof to the general case). It

is known that f : Ω→ Ω is an expansive homeomorphism, where Ω denotes the non-wandering

set of f . Assume that the wandering set is the disjoint union ∪n∈Zfn(I) where I = (a, b) is an

open arc. Without loss of generality we will assume that

dist(fn(x), fn(y)) =
dist(x, y)

2n
(6.4)

for all x, y ∈ I and n ≥ 0. For each n ≥ 0 take a point zn ∈ fn(I) such that f−n(zn)→ a.

De�ne a continuous map T : S1 → R+, the return time function, as T (x) = 1 if x ∈ Ω or

x ∈ ∪n≥0f
−n(I), T (zn) = 1 + 1/n for all n > 0 and extend T linearly on each fn(I) with n > 0.

We claim that the �ow on the torus with return map f and return time T , de�ned above,

is kinematic expansive. To prove kinematic expansiveness we will use item (3) of Proposition

6.3.1. We know that f : Ω→ Ω is an expansive homeomorphism. It is easy to see that if x ∈ I
and y /∈ clos(I) then x, y are separated by f . It only rests to consider x, y ∈ clos(I). We divide

the proof in two cases.

First suppose that x, y ∈ I. In the arc I we consider an order such that a < b and using the

homeomorphism f we induce an order on each fn(I) with n ∈ Z. Assume that x < y. Recall

that the sequence zn ∈ fn(I) used to de�ne the return time T has the property f−n(zn) → a.

Therefore there is n0 ≥ 0 such that zn < fn(x) < fn(y) for all n ≥ n0. Let us introduce the

notation xn = fn+n0(x) and yn = fn+n0(y). By the de�nition of T (recall that it was extended

linearly) and equation (6.4) we have that

T (xn)− T (yn) ≥ dist(xn, yn)

(n0 + n) dist(fn+n0(a), fn+n0(b))

=
dist(xn0 , yn0)

(n0 + n) dist(fn0(a), fn0(b))

for all n ≥ 0. Then ∑
n≥0

T (fn(x))− T (fn(y)) =∞.

Now assume that x = a (a extreme point of I) and y ∈ I. Assume that zn < fn(y) for all

n ≥ n0. As before it can be proved that

T (yn)− T (xn) ≥ 1

n

dist(fn0(b), fn0(y))

dist(a, b)
.

And we arrive again to a divergent series. The case y = b is similar to this case. This proves

that the �ow is kinematic expansive.
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Theorem 6.3.10. An orientation reversing homeomorphism f : S1 → S1 admits a kinematic

expansive suspension if and only if it has wandering points, �xed points are not accumulated by

periodic points and the wandering set has a �nite number of components.

Proof. Since f reverses orientation it has two �xed points. The dynamics is then reduced to

an interval homeomorphism and we can apply Proposition 6.3.7 to conclude the proof.

6.3.5 Smooth suspensions of circle di�eomorphisms

In this section we apply the results of [11] to study smooth kinematic expansive suspensions of

irrational rotations.

Theorem 6.3.11. No suspension of an irrational rotation f : S1 → S1 with C1 return time

function T : S1 → R+ is kinematic expansive.

Proof. Let µ denote the f -invariant Lebesgue probability measure on the circle. De�ne

τ =

∫
S1

T dµ.

Denote by α ∈ R \ Q the angle of the rotation f . Let qn ∈ N be the denominator of of the

nth-convergent of the rational approximation of α by the continued fraction algorithm. It holds

that f qn(x) → x as n → ∞ for all x ∈ S1. See, for example, Section 2.3.2 of [11] for more

details. Consider the Birkho� sum

Tm(x) =
m−1∑
i=0

T (f i(x)).

The improved Denjoy-Koksma Theorem proved in [11] states that

sup
x∈S1

|τqn − Tqn(x)| → 0 (6.5)

as n → ∞. Fix x0 ∈ S1 and de�ne xn = fn(x0) for all n ≥ 0. It is easy to see that

Tm+n(x) = Tm(xn) + Tn(x0). Then

Tn(xm)− Tn(x0) = Tm(xn)− Tm(x0)

and in particular

Tqn(xm)− Tqn(x0) = Tm(xqn)− Tm(x0)

for all m,n ≥ 0. Applying equation (6.5) we have that for all ε > 0 there is N such that

|Tqn(xm)− Tqn(x0)| < ε
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for all n ≥ N and m ≥ 0. Therefore

|Tm(xqn)− Tm(x0)| < ε

for all n ≥ N and m ≥ 0. Now we can take n ≥ N such that the distance between xqn and

x0 is smaller than ε. Therefore these two points are not separated by the suspension �ow in

positive time.

Finally, considering f−1 instead of f and arguing as above we conclude that these two

points are not separated by the �ow in negative times. Therefore, the �ow is not kinematic

expansive.

Question 6.3.12. Are there C0 minimal kinematic expansive �ows on the torus?

6.4 Kinematic expansive �ows on surfaces

In Section 6.2 we studied �ows with the property of having every time change being kinematic

expansive (strong kinematic expansiveness). In this section we consider what could be called

conditional expansiveness : the kinematic expansiveness of the �ow depends on the time change.

We consider �ows on the disc and the annulus. In the �nal subsection we prove that every

compact surface admits a kinematic expansive �ow.

6.4.1 The disc

Let D be a two-dimensional compact disc and consider φ : R × D → D a continuous �ow. It

is well known that under these conditions, φ has a singular point. For a kinematic expansive

�ow we show that at least one singularity must be in the interior of the disc. Next we study

the relationship between the number of singularities and the di�erentiability of the �ow.

Proposition 6.4.1. If φ is a kinematic expansive �ow on a disc D then φ has a singularity in

the interior of D.

Proof. Assume by contradiction that the singularities are in the boundary ∂D. The α and ω-

limit set of every point of D must be a singular point, it follows by Poincaré-Bendixon Theorem.

Consequently, there must be two singular points p and q such that the set U of points x ∈ D
such that α(x) = {p} and ω(x) = {q} has non-empty interior. Now it is easy to see that two

points close to an interior point of U contradict the expansiveness of the �ow.

The following result proves that the disc admits kinematic expansive �ows. In particular

this �ow may have just one singular point.
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Proposition 6.4.2. Suppose that φ is a continuous �ow in D with a �nite number of singu-

larities and p ∈ D is an interior point. Assume that p is a repeller �xed point and for all x 6= p

interior to D the ω-limit set of x is ω(x) = ∂D. Then φ admits a kinematic expansive time

change.

Proof. Let l be a local cross section of the �ow meeting the boundary of D. Suppose that the

return map on l is the continuous map f : l→ l and the return time is T : l→ R+. If there are

no singular point in the boundary then we can apply Lemma 6.3.6 to conclude. Therefore we

will assume that there are singularities in the boundary and l is as in Figure 6.10, where q is

another singular point.

q
p

l

Figure 6.10: Kinematic expansive �ow on the disc.

Without loss of generality we assume that the return map f is f(x, 0) = (x/2, 0). Consider

a time change such that the return map of l is T (x, 0) = 1/x. Given 1/2 ≤ x < y < 1 we de�ne

xn = fn(x) = x/2n and yn = fn(y) = y/2n. Then

T (yn)− T (xn) = 2n
(

1

x
− 1

y

)
and therefore

∑∞
i=0 T (yi)− T (xi) = +∞. It implies that φ is kinematic expansive.

The previous result does not hold if we add a hypothesis of di�erentiability.

Theorem 6.4.3. If φ is a smooth kinematic expansive �ows in the disc then φ has at least two

singular points.

Proof. By contradiction assume that φ has only one singularity p ∈ D. By Proposition 6.4.1 we

know that the singular point is in the interior of D and therefore ∂D is a periodic orbit. Since

there is just one singular point, the periodic orbits in D can be totally ordered with respect

to the interior singular point (i.e., if γ1, γ2 are periodic orbits then γ1 < γ2 if γ1 separates p

from γ2). Considering a minimal periodic orbit, we obtain a sub-disc D′ ⊂ D, bounded by such

minimal periodic orbit, such that in the interior of D′ there is no periodic orbit. Now, applying

the techniques of Proposition 6.3.8, near ∂D′, we arrive to a contradiction.
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6.4.2 Periodic bands

Denote by A ⊂ R2 a compact annulus bounded by two circles centered at the origin.

Proposition 6.4.4. Suppose that φ is a kinematic expansive �ow on A such that every orbit

is contained in a circle centered at the origin. If φ has singular points then they all are in one

of the components of the boundary. In particular there are no interior singular points.

Proof. We know that the set of singular points is �nite. Let us �rst show that there is no

singularity in the interior. We argue by contradiction. Take a segment l transversal to the �ow

meeting at p the circle of an interior singularity. We can assume that there are no singular

points in the circles of any q ∈ l if q 6= p. Since the circle of p has at least one singularity we

have that the return time map of l\{p} diverges to +∞ at p. Therefore we can �nd two points,

as close to p as we wish, in di�erent components of l \ {p} with the same period. These points

contradict kinematic expansiveness.

Now assume that there are singular points in both components of ∂A. Let s be a global

cross section of the �ow meeting once each interior orbit. As before, the return time map T

diverges in the boundaries of s. Since T is continuous, it has a minimum at some interior point

x ∈ s. Now we can �nd two points in di�erent components of l \ {x} with the same period.

If these points are su�ciently close to x, then kinematic expansiveness can be contradicted for

arbitrary small expansive constants.

Remark 6.4.5. Notice that we have considered kinematic expansive �ows on the annulus in

Section 6.3.3 (i.e., suspensions of increasing arc homeomorphisms).

6.4.3 Every compact surface admits a kinematic expansive �ow

As mentioned in Remark 6.2.9, there are surfaces do not admitting strong kinematic expansive

�ows. For kinematic expansiveness there is no such restriction.

Theorem 6.4.6. Every compact surface admits a kinematic expansive �ow.

Proof. Given a compact surface S consider a triangulation T1, . . . , Tn. Fix an orientation on

each edge. In Figure 6.11 we see that each triangle Ti admits a kinematic expansive �ow

(recall Proposition 6.4.2) with any prescribed orientation in the edges and singular points in

the corners. Now it is easy to see that the global �ow is kinematic expansive.

6.5 Hyper-expansive �ows

Let φ : R×X → X be a continuous �ow on a compact metric space X. Denote by K the space

of compact subsets of X with the Hausdor� metric distH . Denote by φ
∗ : R×K→ K the �ow

induced by φ, that is: φ∗t (A) = φt(A) for every compact set A ∈ K.
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Figure 6.11: A kinematic expansive �ow on each triangle.

Proposition 6.5.1. If φ∗ is expansive (in the sense of Bowen-Walters) then X is a �nite set.

Proof. Assume by contradiction that |X| =∞. It is easy to see that this implies that there is

at least one regular orbit of φ. So, consider such a regular point x ∈ X. Given δ > 0 consider

ε > 0 such that diam(φ[0,ε](x)) < δ for all t ∈ R. De�ne A = {x, φε(x)} and B = {x, φε/2(x)}.
We have that distH(φ∗t (A), φ∗t (B)) < δ for all t ∈ R. It also holds that φ∗t (A) 6= B for all t ∈ R.
Therefore φ∗ is not expansive and the proof ends.



Chapter 7

Positive expansive �ows

In this chapter we consider positive expansive �ows from a kinematic and a geometric viewpoint.

In Section 7.1 the case of positive kinematic expansiveness is considered. Basic examples

are shown and we study the local behavior of the �ow near a compact orbit. On surfaces, we

prove that positive expansive �ows are suspensions and has no singularities. The smooth case

is also considered. We consider a variation of an example in [67] to show (on a compact metric

space) that a positive kinematic expansive �ow may not be negative kinematic expansive.

In Section 7.2 we prove that positive geometric expansive �ows consists in a �nite number

of compact orbits (singular or periodic).

7.1 Positive kinematic expansive �ows

In this section we consider positive expansive �ows.

De�nition 7.1.1. A �ow φ is positive kinematic expansive if for all ε > 0 there exists δ > 0

such that if dist(φt(x), φt(y)) < δ for all t ≥ 0 then there exists s ∈ R such that y = φs(x) and

|s| < ε.

Remark 7.1.2. If X is a compact subset of R then for every injective and continuous map

T : X → R+ the suspension �ow of the identity map f : X → X by T is positive kinematic

expansive. Notice also that it is negative expansive, i.e., its inverse �ow is positive expansive.

In this section we �rst study the behavior of a positive kinematic expansive (and also

separating) �ow near a compact orbit. On surfaces we give a characterization of such �ows.

We also show that on a compact metric space a positive kinematic expansive �ow may not be

negative kinematic expansive.

7.1.1 Periodic orbits

In this section we consider compact orbits of positive kinematic expansive and separating �ows.

103
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Proposition 7.1.3. Let φ be a positive kinematic expansive �ow on a compact metric space.

If γ is a periodic orbit then there exists δ > 0 such that if φR+(x) ⊂ Bδ(γ) and x /∈ γ then x is

a periodic point.

Proof. Let l ⊂ X be a small local cross section of time τ > 0 meeting the periodic orbit γ only

at some point p ∈ γ. Assume that there is x ∈ l such that φt(x) is close to γ for all t ≥ 0. Let

xn be the sequence of returns of x to l and consider the increasing sequence of return times

tn such that φtn(x) = xn with x0 = x. Take y = x1. Denote by T the return time map of l.

Consider k = supa,b∈l |T (a) − T (b)|. Notice that k → 0 if diam(l) → 0. Denote by f the �rst

return map of l, f(a) = φT (a)(a) for all a ∈ l where f is de�ned. Since y = f(x) we have that∣∣∣∣∣
n∑
i=0

T (f i(y))−
n∑
i=0

T (f i(x))

∣∣∣∣∣ = |T (fn+1(x))− T (x)| ≤ k

for all n ≥ 0.

Therefore, expansiveness implies that x and y are in the same local orbit and since x, y are

in the local cross section l we have that y = x. Then x is a �xed point of f and a periodic

point of φ.

De�nition 7.1.4. A �ow φ is positive separating if there exists δ > 0 such that if

dist(φt(x), φt(y)) < δ

for all t ≥ 0 then y = φR(x).

The following example is a positive separating �ow that is not positive kinematic expansive

and it shows that Proposition 7.1.3 does not hold for positive separating �ows.

Example 7.1.5. Let X = {0, 1} ∪ {xn : n ∈ Z} ⊂ R such that xn is an increasing sequence,

limn→−∞ xn = 0 and limn→∞ xn = 1. De�ne the homeomorphism f : X → X by f(0) = 0,

f(1) = 1 and f(xn) = xn+1. Consider T : X → R+ given by T (0) = T (1) = 1 and T (xn) = 1
|n|+1

for all n ∈ Z. Let φ be the suspension �ow of f by T . By the previous proposition it is easy

to see that it is not positive kinematic expansive. It also holds that φ is positive separating (the

proof is trivial because there are only three orbits for the �ow) and it shows that Proposition

7.1.3 does not hold for positive separating �ows.

Proposition 7.1.6. Suppose that φ is a positive separating �ow with a singular point p ∈ X.

If for some x ∈ X it holds that p ∈ ω(x) then x = p. Consequently, there are no singularities

in the ω-limit set of a regular point.

Proof. Arguing by contradiction consider x 6= p with p ∈ ω(x). Since the �ow is positive

separating, there is δ > 0 such that if y ∈ Bδ(p) and y 6= p then there is t > 0 such that



CHAPTER 7. POSITIVE EXPANSIVE FLOWS 105

φt(y) /∈ Bδ(p). Therefore, there are two increasing and divergent sequences tn, sn ∈ R such that

tn < sn for all n ≥ 1, sn − tn → ∞, φsn(x) → p, φtn(x) ∈ ∂Bδ(p) and φ[tn,sn](x) ⊂ Bδ(p). If z

is a limit point of φtn(x) it is easy to see that φR+(z) ⊂ Bδ(p). But this contradicts that φ is

positive separating.

7.1.2 Positive kinematic expansive �ows on surfaces

In this section we classify positive kinematic expansive �ows of compact surfaces. We consider

the C0 and C2 case.

Lemma 7.1.7. Let l = [a, b] and l′ be two compact local cross sections and suppose there exists

a continuous non-bounded function τ : [a, b) → R such that φ(0,τ(x))(x) ∩ l = ∅ and φτ(x)x ∈ l′

for all x in [a, b). Then ω(b) ⊂ Sing.

Proof. See Lemma 3 in [103] or Lemma 2.2 in [5].

Proposition 7.1.8. If φ is positive kinematic expansive on a compact surface then Sing(φ) = ∅.

Proof. By contradiction assume that p ∈ S is a singular point. By Proposition 7.1.6 we have

that p must be a repeller. Consider the open set

U =

{
x ∈ S : lim

t→−∞
φt(x) = p

}
.

We will show that ∂U is a periodic orbit. Take x ∈ U , x 6= p. Consider y ∈ ω(x). By

Proposition 7.1.6 we have that y is a regular point. Let l be a compact local cross section

with y as an extreme point. Assume that φR+(x) cuts l in�nitely many times and denote by

x1, x2, . . . the cuts of the positive trajectory of x with l. De�ne

V = {z ∈ l : φR+(z) ∩ l 6= ∅}.

We will show that the arc [x1, x2] ⊂ l is contained in V . Denote by V1 the connected component

of V ∩ [x1, x2] containing x1. We have that V1 is open in [x1, x2]. By Lemma 7.1.7 and

Proposition 7.1.6 we have that the return time of the points in V1 to l is bounded. Therefore,

by the continuity of the �ow and the compactness of l, the extreme points of V1 are in V1 and

it is closed. This proves that [x1, x2] ⊂ V1. Analogously it can be proved that [xn, xn+1] ⊂ V .

Therefore every point in l \ {y} returns to l. Again, if the return time were not bounded we

contradict Proposition 7.1.6. Therefore y is a periodic point. But this is a contradiction with

Proposition 7.1.3. Then, there cannot be singular points.

Theorem 7.1.9. Let φ be a continuous �ow on a compact surface. If φ is positive kinematic

expansive then it is topologically equivalent with one of the following models:
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1. A suspension of the identity of [0, 1].

2. A suspension of an orientation preserving circle homeomorphism with irrational rotation

number and �nitely generated wandering set.

Proof. By Proposition 7.1.8 we only have to consider �ows without singularities. It is known

that the only surfaces admitting such �ows are: the torus, the annulus, the Klein's bottle and

the Moebius band. Suppose �rst that φ has a periodic orbit γ. If there is x /∈ γ such that

φ−t(x)→ γ as t→∞ then, arguing as in the proof of Proposition 7.1.8, we can prove that ω(x)

is a periodic orbit. But this contradicts Proposition 7.1.3. Therefore, every orbit close to γ must

be periodic. Now, applying Lemma 7.1.7 we have that every orbit is periodic because there are

no singular points. Notice that γ must be two-sided, i.e., if U is a tubular neighborhood of γ

then U \γ has two components. This is because, if this were not the case, then if T is the period

of γ and x is close to γ then x and y = φT (x) 6= x would contradict kinematic expansiveness.

Now recall that the Moebius band and the Klein bottle always have periodic orbits. Therefore

S must be orientable. Also, the torus does not admit a kinematic expansive �ow with every

orbit being periodic. Therefore S must be an annulus.

Now suppose that S is the torus and φ has no periodic orbits. In this case it is known that

φ is a suspension. Thus, we conclude by Theorem 6.3.9.

Remark 7.1.10. Concerning the converse of Theorem 7.1.9, we do not known if it is true if

the �ow is minimal. But assuming the conditions in (2) and that there are wandering points,

we can de�ne a positive kinematic expansive time change by applying the techniques of Theorem

6.3.9 above and Example 7.1.14 below.

Theorem 7.1.11. If φ is a C2 positive kinematic expansive �ow on a compact surface then φ

is a suspension of the identity of [0, 1] and S is an annulus.

Proof. By Theorem 7.1.9 we have to show that φ cannot satisfy item (2) in this Theorem. By

[41] and assuming that φ satis�es item (2) we have that φ is a minimal �ow on the torus. By

Theorem 6.3.11 we know that φ cannot be expansive. This contradiction proves the theorem.

Let us introduce a natural de�nition.

De�nition 7.1.12. A �ow is positive strong kinematic expansive if every time change is positive

kinematic expansive.

An example of such �ow is the horocycle �ow of a surface of negative curvature, this is

proved in [40]. The horocycle �ow is de�ned on three-dimensional manifold. We now apply our

results to conclude that such �ows do not exist on surfaces.

Corollary 7.1.13. There are no positive strong kinematic expansive �ows of surfaces.

Proof. It follows by Proposition 7.1.8 and Theorem 6.2.8.
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7.1.3 Minimal positive expansiveness

In this section we consider an adaptation of an example in [67] to show that minimal positive

kinematic expansive �ows may not be trivial. We will suspend a minimal expansive homeo-

morphism of a Cantor set under a speci�c return time function. The example also shows that

a positive kinematic expansive �ow may not be negative expansive.

Example 7.1.14. Let θ ∈ R be an irrational number and consider the rotation R : [0, 1)→ [0, 1)

given by R(x) = x+ θ mod 1. By splitting along the orbit of 0 under R we obtain a minimal

expansive homeomorphism f : l→ l on a Cantor set l. This homeomorphism is conjugate with

a Sturmian subshift as de�ned in Section 3.7.1. Now let xn = Rn(0) and choose an increasing

sequence of positive integers nj such that xnj is strictly decreasing to 0. Next �nd a sequence

δj decreasing to 0 such that, de�ning Ij = [xnj , xnj + δj], Ij ∩ Ik = ∅ if j 6= k. De�ne a function

T : [0, 1)→ R+ by the conditions:

1. T (xnj) = 1 + 1/j and T (xnj + δj) = 1,

2. extend by linearity between the end points of each Ij and

3. T (x) = 1 otherwise.

Note that since the discontinuities of T occurs at the points xnj , T can be extended to a con-

tinuous function on the Cantor set l.

Let φ be the suspension �ow of R : l→ l under the time function T . Given x ∈ [0, 1) in the

orbit of 0 under R, denote by x+, x− ∈ l the splitting points of x. Notice that

dist(fk(0−), fk(0+))→ 0

as k → ±∞ and that there exists δ > 0 such that if x /∈ {f i(0±) : i ≥ 0} and y 6= x then there

is k ≥ 0 such that dist(fk(x), fk(y)) > δ. If Tn : l → R is given by φTn(x)(x) = fn(x) for all

x ∈ l then we have

Tnj(0
−)− Tnj(0+) =

j∑
k=1

1/k.

By Proposition 6.3.1 (the arguments in its proof) we conclude that φ is positive kinematic

expansive. Note that dist(φt(0
−), φt(0

+))→ 0 as t→ −∞ and then φ is not negative kinematic

expansive.

7.1.4 Kinematic bi-expansive �ows

In this brief section we wish to remark the non-existence of singularities for a �ow being

simultaneously positive and negative kinematic expansive. Let φ be a continuous �ow on a

compact metric space X and de�ne the inverse �ow φ−1 as φ−1
t = φ−t.
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De�nition 7.1.15. We say that φ is kinematic bi-expansive if φ and φ−1 are positive kinematic

expansive.

Examples of such �ows are the periodic annulus (Example 6.1.4) and the horocycle �ow of

a negatively curved surface [40].

Proposition 7.1.16. If φ is a kinematic bi-expansive �ow on a compact metric space X then

every singularity is an isolated point of the space. Therefore, if X is connected with more than

one point then there are no singularities.

Proof. Assume by contradiction that p is a non-isolated singular point. Then, there is xn → p

with xn 6= p for all n ≥ 1. Since the �ow is positive kinematic expansive there are δ > 0 and

a divergent sequence tn > 0 such that dist(φtn(xn), p) = δ and φ[0,tn](xn) ⊂ Bδ(p). Taking z a

limit point of φtn(xn) it is easy to prove that dist(φ−t(z), p) ≤ δ for all t ≥ 0. Since δ can be

taken arbitrarily small, we have that z and p contradict the negative kinematic expansiveness

of the �ow. This contradiction proves that singularities are isolated points of the space.

7.2 Positive geometric expansive �ows

As we proved in Theorem 3.2.3 (a well known result), if a compact metric space X admits a

positive expansive homeomorphism then X is �nite. In this section we show the corresponding

result for �ows, giving an a�rmative answer to Problem 5.6 in [68]. We prove that if X

admits a positive expansive �ow (see De�nition 7.2.8) then X is a �nite union of circles and

isolated points. No proof in the discrete case can be directly adapted to the case of �ows

because expansiveness of �ows is de�ned using reparameterizations of time. So, new techniques

are needed. In Section 7.2.1 we introduce a new metric, equivalent to the given one, that

has regular properties in relation with the �ow (see Proposition 7.2.7). This metric does not

depend on the expansiveness of the �ow and seems to be of interest on its own. It allows us

to prove that every point of a positive expansive �ow is negative Lyapunov stable (allowing a

time reparameterization). Having proved that, we �nd again that the proofs in the discrete

case cannot be adapted. For example, [75] considers a �nite covering U1, . . . , Un such that

diam f−k(Ui)→ 0 as k →∞ and easily it is concluded that the space is �nite. In the continuous

case one has to reparameterize the trajectories, so this argument is not easy to adapt for �ows.

The diameters of open sets never decrease to zero with a �ow without singular points. And

if one introduces reparameterizations, the �owed open sets may not cover. So, some care is

needed to conclude the proof. A di�erent argument is given in Section 7.2.4.

Let us remark some facts about translating results from discrete dynamics to �ows. If

f : X → X is a homeomorphism then stable sets are usually de�ned as

W s
γ (x) = {y ∈ X : dist(fn(x), fn(y)) ≤ γ for all n ≥ 0}.
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In the discrete-time case it is easy to prove that stable sets are closed sets. Consider φ : R×X →
X a continuous �ow on a compact metric space. Since the de�nition of expansiveness for �ows

considers reparameterizations it is natural to de�ne stable sets allowing reparameterizations:

y ∈ W s
γ (x) if there is a reparameterization h : R→ R (increasing homeomorphism with h(0) =

0) such that

dist(φh(t)(y), φt(x)) ≤ γ

for all t ≥ 0. For �ows, it is not true that W s
γ (x) is a closed set, see Example 9 in [126]. It

seems to be a strange feature of the metric, so, it is natural to look for a new distance function

(de�ning the same topology) with regular properties in relation with the �ow (see Section 7.2.1).

In [78] it is proved that if X is a compact metric space admitting a minimal expansive

homeomorphism then dimtop(X) = 0. In the case of �ows one would expect to conclude that

dimtop(X) = 1 if X admits an expansive minimal �ow. In [67] techniques of local cross sections

are used to attack the problem, but it remains an open case in order to give a complete

translation (see Theorem 3.6 in [67]). This case is associated with spiral orbits. A point x is

spiral if there is t > 0 such that φt(x) ∈ W s
γ (x)∩H(x) where H(x) is a small local cross section

of the �ow at x. In the discrete case, spiral points give rise to periodic orbits, but in the case

of �ows it seems to be still an open problem.

In [121] (the last line of the �rst page) one �nds the following: �Having �rst found theorems

in the di�eomorphism case, it is usually a secondary task to translate the results back into

the di�erential equations framework�. In cited work, hyperbolic dynamics are considered. A

special feature of hyperbolic �ows is that stable sets need no reparameterizations. That is, if φ

is a hyperbolic �ow then:

1. for all ε > 0 there is δ > 0 such that if dist(φh(t)(x), φt(y)) < δ for all t ≥ 0 and some

reparameterization h then dist(φt(x), φt(y)) < ε for all t ≥ 0 and moreover,

2. for small s it holds that dist(φt+s(x), φt(y))→ 0 as t→∞.

It is a consequence of the Stable Manifold Theorem for hyperbolic �ows. Therefore, techniques

of di�eomorphisms can be adapted to �ows, or at least they will not have to deal with repa-

rameterizations. In light of this remark we wish to state the following problem. Given an

expansive �ow φ, �nd a topologically equivalent one φ′ (i.e., both �ows in X have the same

orbits with the same orientation) satisfying items 1 and 2 above. The �ow φ′ can be considered

as a global reparameterization of φ. If one is able to �nd such global reparameterization, stable

sets would not need reparameterization and translations from expansive homeomorphisms to

expansive �ows would be easier. This seems to be an open problem. Another open problem

is to de�ne and construct a hyperbolic distance for an expansive �ow as is done in [30] in the

case of homeomorphisms.

Let us now describe the contents of this chapter. In Section 7.2.1 we de�ne the Hausdor�

metric for a �ow and prove its main properties. In Section 7.2.2 some technical remarks are
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given related to expansiveness and reparameterizations. In Section 7.2.3 we show that the

trajectories of a positive expansive �ow are negative Lyapunov stable. In Section 7.2.4 we

prove our main result and in Section 7.2.5 it is extended to positive expansiveness in the sense

of Komuro [69] and singular points are allowed.

7.2.1 Hausdor� distance for a �ow

In this section we consider a continuous �ow on a compact metric space. We construct a metric

that is equivalent with the original one and it has good properties relative to the �ow.

Given a compact metric space (X, dist) consider the hyper-space (K, distH). Let φ : X×R→
X be a continuous �ow. Denote by I the real interval [−1, 1] and for any τ > 0 de�ne

Iτ = [−τ, τ ]. Consider the map φIτ : X → K that associates to each point its Iτ -orbit segment

φIτ (x) = {φtx : |t| ≤ τ}.

Proposition 7.2.1. For every τ > 0 the map φIτ is uniformly continuous.

Proof. By the uniform continuity of the �ow on compact intervals of time, we have that given

ε > 0 there is δ > 0 such that if dist(x, y) < δ then dist(φtx, φty) < ε for every t ∈ Iτ and

every x, y ∈ X. So distH(φIτ (x), φIτ (y)) < ε if dist(x, y) < δ.

Notice that if the �ow has periodic orbits with arbitrarily small periods then φIτ cannot be

injective. We do not consider singularities (i.e. equilibrium points) as periodic points.

Proposition 7.2.2. The map φIτ is injective if there are no periodic orbits of period smaller

or equal than 3τ .

Proof. Arguing by contradiction assume that φIτ (x) = φIτ (y) with x 6= y. It implies that

x is not singular. Without loss of generality we can assume that there is s ∈ (0, τ ] such

that y = φs(x). Then φ[s−τ,s+τ ]x = φ[−τ,τ ]x. So, φs+τx = φs′x for some s′ ∈ Iτ . Therefore

φs+τ−s′x = x. This is a contradiction because 0 < s+ τ − s′ ≤ 3τ and x is not singular.

Notice that expansive �ows (with or without singular points) and �ows without singular

points (expansive or not) do not have orbits with arbitrarily small periods.

Assuming that φIτ is injective we consider the following distance in X

dist(x, y) = distH(φIτ (x), φIτ (y)).

Proposition 7.2.3. If φIτ is injective then the new distance dist is equivalent with dist.

Proof. Since φIτ is continuous and X is compact, the image of φIτ is compact. So φIτ : X →
φIτ (X) is an open map and the inverse φ−1

Iτ : φIτ (X) → X is continuous. Then (X, dist) and

(φIτ (X), distH) are homeomorphic. The distance dist in X is the pull-back of distH by φIτ , so

dist and dist are equivalent metrics in X.
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The following propositions deal with the following question. For y close to φ−t0x for some

t0 > 0, is it true that dist(y, x) ≥ dist(φty, x) for small and positive values of t? The following

example shows that it is not always the case.

Example 7.2.4. Let f : R→ R be given by f(x) = x sin(1/x) and f(0) = 0. Consider the �ow

in R2 (with the Euclidean metric) de�ned as φt(x, f(x) + y) = (x + t, f(x + t) + y). It is easy

to see that for x = (0, 0) the function t 7→ dist(x, φt(x)) is not increasing on any interval [0, ε].

Therefore, the property mentioned above does not hold in this case. We have that this �ow is

conjugated with ψt(x, y) = (x+ t, y), so, one can think that the problem is with the metric.

Assume that the �ow has no singular points. We will show that our metric dist has not the

problem shown in the previous example. To continue we need the following lemma. It is stated

for the inverse �ow, de�ned as φ−1
t = φ−t, because in the following proposition it will be used

in this way.

Lemma 7.2.5. If φ−1
s x 6= x for all x ∈ X and s ∈ (0, 3τ ] then there is τ̃ > 0 such that for all

p ∈ X, dist(p, φ−1
θ p) < dist(p, φ−1

θ+2τp) for all p ∈ X and θ ∈ [0, τ̃ ].

Proof. By contradiction assume that there is θn > 0, θn → 0, and pn → p∗ such that

dist(pn, φ
−1
θn
pn) ≥ dist(pn, φ

−1
θn+2τpn) for all n ≥ 0. Then, in the limit, we have the contra-

diction φ−1
2τ p∗ = p∗.

Now we can prove the main result of this section. We assume that there are no periods

smaller than 3τ .

Proposition 7.2.6. If φ has no singular points then for all t0 ∈ (0, τ̃ ] (τ̃ is given in the previous

lemma) there is δ > 0 and t1 ∈ (0, t0) such that if dist(φtoy, x) < δ and 0 ≤ s ≤ u ≤ t1 then

dist(φsy, x) ≥ dist(φuy, x).

Proof. By contradiction assume that there is t0 ∈ (0, τ̃ ], sequences xn, yn ∈ X and sn, un ∈ R
such that φt0yn → z, xn → z, 0 ≤ sn ≤ un → 0 and

dist(φsnyn, xn) < dist(φunyn, xn) (7.1)

for all n ≥ 0. Inequality (7.1) means that there is εn > 0 such that

(a) φIτ (φsnyn) ⊂ Bεn(φIτ (xn)) and

(b) φIτ (xn) ⊂ Bεn(φIτ (φsnyn))

but

(c) φIτ (φunyn) * Bεn(φIτ (xn)) or

(d) φIτ (xn) * Bεn(φIτ (φunyn)).
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In this paragraph we show that εn does not converge to 0. By (a) we have that there is

wn ∈ Iτ such that

dist(φ−τ+snyn, φwnxn) < εn. (7.2)

Taking a subsequence we can assume that wn → w∗ ∈ Iτ . Taking limit in the inequality (7.2)

and supposing that εn → 0 we have that φ−τ−t0z = φw∗z. This is a contradiction because

z = φτ+t0+w∗z and |τ + t0 + w∗| < 3τ . So, taking a subsequence of εn, we assume that

εn → ε∗ > 0.

Assume that (c) holds. It implies that there is vn ∈ Iτ such that for all t ∈ Iτ

dist(φvn+unyn, φtxn) ≥ εn. (7.3)

Now we show that vn → τ . By (a) we have that for all s ∈ Iτ , there is t ∈ Iτ such that

dist(φs+snyn, φtxn) < εn. (7.4)

Using the inequalities (7.3) and (7.4) we have that s+ sn 6= vn +un for all s ∈ Iτ . But vn ∈ Iτ ,
so vn ∈ (τ − (un − sn), τ ]. Then vn → τ .

Now, taking limit in the inequality (7.3) we have that dist(φτ−t0z, φtz) ≥ ε∗ for all t ∈ Iτ .
So we can put t = τ − t0 and dist(z, z) ≥ ε∗ > 0 which is a contradiction. Then (c) cannot

hold.

Now assume that (d) is true. Condition (d) means that there is vn ∈ Iτ such that for all

t ∈ Iτ we have

dist(φvnxn, φt+unyn) ≥ εn. (7.5)

By (b) we have that there is wn ∈ Iτ such that

dist(φvnxn, φsn+wnyn) < εn. (7.6)

We will show that wn → −τ . By (7.5) and (7.6) we have that sn + wn 6= t + un for all

t ∈ Iτ . Then wn /∈ [−τ + un− sn, τ + un− sn] but wn ∈ Iτ . Therefore wn ∈ [−τ,−τ + un− sn)

and wn → −τ .
Assuming that vn → v∗ ∈ Iτ and taking limit in (7.5) we have that

dist(φv∗z, φt−t0z) ≥ ε∗ (7.7)

for all t ∈ Iτ . Also, taking limit in (7.6) we have

dist(φv∗z, φ−τ−toz) ≤ ε∗. (7.8)

By (7.7) and the fact that ε∗ > 0 we have that v∗ 6= t− t0 for all t ∈ Iτ . Then v∗ ∈ (τ − t0, τ ].

If t = τ in inequality (7.7) we have that dist(φv∗z, φτ−t0z) ≥ ε∗. This and inequality (7.8)

contradict Lemma 7.2.5, with θ = v∗ − (τ − t0) and p = φv∗z, because t0 ∈ (0, τ̃ ].
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Proposition 7.2.7. For all t2 ∈ (0, τ̃ ] there are δ > 0 and t1 > 0 such that if dist(φtx, y) < δ

or dist(x, φ−ty) < δ for some t ∈ [t2, τ̃ ] and 0 ≤ s ≤ u ≤ t1 then dist(φsy, x) ≥ dist(φuy, x).

Proof. It follows by Proposition 7.2.6 and the compactness of the interval [t2, τ̃ ].

7.2.2 Expansive �ows

In this section we present the de�nition of expansive �ow and some useful equivalences. We

state them for positive expansiveness but they have their counterpart for expansive �ows. We

consider �ows without singular points. In Section 7.2.5 we consider the singular case.

Let H+ be the set of all increasing homeomorphisms h : R → R such that h(0) = 0. Such

maps are called reparameterizations.

De�nition 7.2.8. A continuous �ow φ on a compact metric space X is positive expansive if

for every ε > 0 there is δ > 0 such that if dist(φh(t)x, φty) < δ for all t ≥ 0, with x, y ∈ X and

h ∈ H+, then y ∈ φIεx.

Recall that y ∈ φIεx if and only if there is t ∈ Iε = [−ε, ε] such that y = φtx. This is the

positive adaptation of the de�nition given by R. Bowen and P. Walters in [17]. Now we present

an equivalent de�nition. Consider H as the set of non-decreasing, surjective and continuous

maps h : R → R such that h(0) = 0. By non-decreasing we mean: if s < t then h(s) ≤ h(t).

The idea is to allow a point to stop the clock for a while (recall that in [80] reparameterizations

are called clocks). The maps of H will be called reparameterizations with rests.

De�ne the set of pairs of reparameterizations with rests

H2 = {g = (h1, h2) : h1, h2 ∈ H}

and extend the action of φ to X ×X as φt(x, y) = (φtx, φty). Also we de�ne

φg(t)(x, y) = (φh1(t)x, φh2(t)y)

for g = (h1, h2) ∈ H2. We now consider the Fréchet distance de�ned by

distF (x, y) = inf
g∈H2

sup
t≥0

dist(φg(t)(x, y)).

This distance was introduced in [33] in the beginning of the Theory of metric spaces. It was

�rst de�ned for compact curves but, as noticed in [80], it can be extended to non-compact

trajectories.

Proposition 7.2.9. A �ow φ is positive expansive if and only if for all ε > 0 there is δ > 0

such that if distF (x, y) < δ then x and y are in an ε-orbit segment.
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Proof. The converse follows because idR ∈ H+ ⊂ H. The direct part is a consequence of the

following lemma.

Lemma 7.2.10. For all δ > 0 there is δ′ > 0 such that if distF (x, y) < δ′ then there is h ∈ H+

such that dist(φh(t)x, φty) < δ for all t ≥ 0.

Proof. Given δ > 0 consider δ′ ∈ (0, δ) and γ > 0 such that dist(x, φtx) < (δ − δ′)/2 for

all x ∈ X and for all t ∈ (−γ, γ). Suppose that distF (x, y) < δ′ for some x, y ∈ X. Then,

there is g = (hx, hy) ∈ H2 such that dist(Φg(t)(x, y)) < δ′ for all t ≥ 0. Take two increasing

sequences sn and tn such that hx(tn) = hy(sn) = nγ for all n ≥ 1, starting with s0 = t0 = 0.

Then de�ne h1(tn) = h2(sn) = nγ and extend piecewise linearly. In this way we have that

|h1(t)−hx(t)|, |h2(t)−hy(t)| < γ for all t ≥ 0. Then by the triangular inequality it follows that

h = h1 ◦ h−1
2 works.

Consider the set Tε(x, y) ⊂ R2 of pairs of positive numbers (tx, ty) such that there are

g ∈ H2 and s > 0 such that dist(φg(t)(x, y)) ≤ ε for all t ∈ [0, s] and g(s) = (tx, ty). In R2 we

consider the norm ‖(a, b)‖ = |a| + |b| (the properties of this speci�c norm will be used in the

next section).

Remark 7.2.11. If Tδ(x, y) is not bounded then π1Tδ(x, y) and π2Tδ(x, y) are not bounded,

where πi(x1, x2) = xi, i = 1, 2, are the canonical projections of R2.

Lemma 7.2.12. For all T, δ′ > 0 there is δ > 0 such that if dist(φg(t)(x, y)) < δ for all t ∈ [0, T ]

and some g ∈ H2 then there is h ∈ H+ such that dist(φh(t)x, φty) < δ′ for all t ∈ [0, h(T )].

Proof. Use the same technique of Lemma 7.2.10.

If distF (x, y) < ε then Tε(x, y) is not bounded, as can be seen from the de�nitions. The

following proposition is a kind of converse. Its proof is based on the proof of Lemma 9 in [124].

Proposition 7.2.13. For all ε > 0 there is δ > 0 such that if Tδ(x, y) is not bounded then

distF (x, y) < ε.

Proof. For ε > 0 given consider γ > 0 such that

if dist(x, y) < ε/2 and |t| < γ then dist(φtx, y) < ε. (7.9)

Take δ′ ∈ (0, ε/2) such that

if dist(x, y) < δ′ then dist(φ±γx, y) > δ′. (7.10)

Finally, pick δ > 0 from Lemma 7.2.12 associated to δ′. We will show that this value of δ works.

Suppose that for some x, y ∈ X we have that Tδ(x, y) is not bounded. So, for all n ≥ 1 there

are h′x, h
′
y ∈ H and T > 0 such that

dist(φh′x(t)x, φh′y(t)y) < δ
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for all t ∈ [0, T ] and h′y(T ) = n. Then by Lemma 7.2.12 there is hnx ∈ H such that

dist(φhnx(t)x, φty) < δ′

for all t ∈ [0, n]. Eventually taking a subsequence we can suppose that there is an increasing

sequence wn →∞ such that hnx(wn) = nγ and

dist(φhnx(t)x, φty) < δ′

for all t ∈ [0, wn]. We will de�ne h ∈ H such that

dist(φh(t)x, φty) < ε

for all t ≥ 0. De�ne h(wn) = hnx(wn) = nγ for all n ≥ 0. For t ∈ [0, w1] de�ne h(t) = h1
x(t).

Now consider t ∈ (wn−1, wn). To de�ne h(t) we consider two cases.

1. If hn−1
x (wn−1) ≤ hnx(wn−1) then

h(wn−1) = hn−1
x (wn−1)

and extend linearly for t ∈ (wn−1, wn).

2. If hn−1
x (wn−1) > hnx(wn−1) consider z ∈ (wn−1, wn) such that hnx(z) = (n − 1)γ. De�ne

h(t) = (n− 1)γ for all t ∈ [wn−1, z] and extend linearly for t ∈ [z, wn].

By condition (7.10) we have that |h(t) − hnx(t)| ≤ γ for all t ∈ [wn−1, wn] and n ≥ 1. Then,

since dist(φhnx(t)x, φty) < δ′ < ε/2, we have by condition (7.9) that

dist(φh(t)x, φty) < ε

for all t ≥ 0 and the proof ends.

Here is another characterization of expansiveness that will be useful.

Proposition 7.2.14. A �ow φ is positive expansive if and only if for all ε > 0 there is δ > 0

such that if Tδ(x, y) is not bounded then x and y are in an ε-orbit segment.

Proof. Suppose that φ is positive expansive. Consider ε > 0 given. By Proposition 7.2.9 there

is δ′ such that if distF (x, y) < δ′ then they are in a ε-orbit segment. Now take from Proposition

7.2.13 a positive δ such that if Tδ(x, y) is not bounded then distF (x, y) < δ′. This �nishes the

direct part.

The converse follows because if distF (x, y) < δ then Tδ(x, y) is not bounded.
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7.2.3 Stability

In this section we assume that the �ow has no singular points. We introduce the concept of

Lyapunov stability allowing reparameterizations of the trajectories. The stability properties of

positive expansive �ows are stated. We assume that the metric of the space is dist, de�ned in

Section 7.2.1.

We start de�ning Lyapunov stability according to the Fréchet distance as was done in

[78,100].

De�nition 7.2.15. We say that x is stable if for every ε > 0 there is δ > 0 such that if

dist(x, y) < δ then distF (x, y) < ε, i.e. there is a pair of reparameterizations with rests g ∈ H2

such that dist(φg(t)(x, y)) < ε for all t ≥ 0.

Remark 7.2.16. By Lemma 7.2.10 we have that x is stable if and only if for every ε > 0

there is δ > 0 such that if dist(x, y) < δ then there is a reparameterization h ∈ H+ such that

dist(φtx, φh(t)y) < ε for all t ≥ 0.

De�nition 7.2.17. We say that (Tx, Ty) in the closure of Tε(x, y) is a maximal pair of times

for (ε, x, y) if for all (tx, ty) ∈ Tε(x, y) we have that ‖(Tx, Ty)‖ ≥ ‖(tx, ty)‖ for the sum norm in

R2.

In the following result we use the properties of dist (Proposition 7.2.7). For this we will

consider the positive number τ̃ given in Lemma 7.2.5 and the interval Iτ̃ = [−τ̃ , τ̃ ]. As usual,

we de�ne the distance between a point a ∈ X and a set A ⊂ X as dist(a,A) = inf{dist(a, x) :

x ∈ A}.

Proposition 7.2.18. For all ε > 0 there is σ > 0 such that if (Tx, Ty) is a maximal pair of

times for (ε, x, y) then

dist(φTxx, φIτ̃ (φTyy)) > σ and dist(φTyy, φIτ̃ (φTxx)) > σ.

Proof. Given ε > 0 consider t2 > 0 such that φ[−t2,t2]x ⊂ Bε(x) for all x ∈ X. For this value of

t2 take δ > 0 and t1 > 0 from Proposition 7.2.7. Consider σ ∈ (0, δ) such that

if y /∈ Bε(x) then dist(φ[−t2,t2]x, y) > σ. (7.11)

Notice that dist(φTxx, φTyy) = ε. By contradiction assume that

dist(φTyy, φIτ̃ (φTxx)) ≤ σ,

being the other case symmetric. By condition (7.11) there is t0 ∈ [−τ̃ ,−t2] ∪ [t2, τ̃ ] such that

dist(φTyy, φt0φTxx) ≤ σ.
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Suppose that t0 ∈ [t2, τ̃ ] (the other case is similar). Now take g ∈ H2, (T ′x, T
′
y) ∈ R2 and s > 0

such that dist(φg(t)(x, y)) < ε for all t ∈ [0, s],

‖(T ′x, T ′y)− (Tx, Ty)‖ < t1 (7.12)

and g(s) = (T ′x, T
′
y). We de�ne ĝ ∈ H2 as

ĝ(t) =


g(t) for all t ≤ s,

g(s) + (t− s, 0) if t ∈ [s, s+ t1],

g(s) + (t− s, t− s− t1) if t ≥ s+ t1.

So, for t ∈ [s, s+ t1] we have, by Proposition 7.2.7, that

dist(φĝ(t)(x, y)) ≤ dist(φĝ(s)(x, y)) < ε.

Then g(s + t1) = (T ′x + t1, T
′
y) ∈ Tε(x, y) and by inequality (7.12) we have that ‖g(s + t1)‖ >

‖(Tx, Ty)‖ contradicting the maximality of (Tx, Ty).

Given ε > 0 and x, y ∈ X we consider the following set of pairs of reparameterizations with

rests

H2
ε(x, y) = {g ∈ H2 : dist(φ−1

g(t)(x, y)) < ε for all t ≥ 0}.

The following result says that if two points are close enough then H2
ε(x, y) is not empty if φ is

positive expansive without singular points. Notice that positive expansiveness does not depend

on the metric (de�ning the same topology).

Lemma 7.2.19. If φ is positive expansive then every point is stable for φ−1 with uniform δ.

Proof. By Proposition 7.2.14 there is an expansive constant ε′ > 0 such that if Tε′(x, y) is not

bounded then y ∈ φIτ̃x. By contradiction assume that there are ε ∈ (0, ε′) and two sequences

xj, yj such that dist(xj, yj) → 0 as j → ∞ and Tε(xj, yj) (de�ned for φ−1) is bounded for

all j ∈ N. For each j consider (Txj , Tyj) a maximal pair of times for (ε, xj, yj) associated to

φ−1. By the continuity of the �ow we have that Txj , Tyj → ∞ as j → ∞. Eventually taking

subsequences, we can assume that φTxjxj → x∗ and φTyj yj → y∗. By Proposition 7.2.18 we

have that x∗ and y∗ are not in a τ̃ -orbit segment. Also, for every T > 0 we have that there

are g ∈ H2 and s > 0 such that dist(φg(t)(x∗, y∗)) < ε′ for all t ∈ [0, s] and ‖g(s)‖ ≥ T . So,

Tε′(x∗, y∗) is not bounded and it contradicts the positive expansiveness of the �ow (as stated

in Proposition 7.2.14) because x∗ and y∗ are not in a τ̃ -orbit segment.

The following lemma states the uniform asymptotic stability for t→ −∞.

Lemma 7.2.20. If φ is positive expansive then for all ε > 0 there is δ > 0 such that for

all σ > 0 there is T > 0 such that if dist(x, y) < δ then there is g ∈ H2
ε(x, y) such that

dist(φ−1
g(t)(x, y)) < σ if ‖g(t)‖ ≥ T .
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Proof. Given ε > 0 smaller than an expansive constant, consider δ > 0 from Lemma 7.2.19.

By contradiction we will show that this value of δ works. So, suppose that there are σ > 0,

Tn →∞ and xn, yn ∈ X such that dist(xn, yn) < δ and

for all g ∈ H2
ε(xn, yn) there is t ≥ 0 such that

‖g(t)‖ ≥ Tn and dist(φ−1
g(t)(xn, yn)) ≥ σ.

(7.13)

Again by Lemma 7.2.19 there is δ′ such that

if dist(u, v) < δ′ then H2
σ(u, v) is not empty. (7.14)

For each n take gn ∈ H2
ε(xn, yn) and consider tn such that ‖gn(tn)‖ = Tn− τ̃ . Let (un, vn) =

φ−1
gn(tn)(xn, yn). By conditions (7.13) and (7.14) there is δ′′ such that dist(φtun, vn) ≥ δ′′ and

dist(un, φtvn) ≥ δ′′ if |t| ≤ τ̃ . So, limit points of un and vn are not in a τ̃ -orbit segment and

contradict positive expansiveness.

7.2.4 Positive expansiveness

In this section we prove the main result of this chapter. We consider �ows without singular

points. First we show that positive expansive �ows have periodic orbits. The idea to �nd such

trajectories is to show that there is a compact invariant set that is a suspension and apply the

result for positive expansive homeomorphisms.

Lemma 7.2.21. Every positive expansive �ow has at least one periodic orbit.

Proof. Consider ε′ > 0 such that for all y ∈ X

if (h̃, h̃′) ∈ H2
2ε′(y, y) then |h̃(t)− h̃′(t)| < τ̃/2 for all t ≥ 0. (7.15)

Take a recurrent point x and tn → +∞ such that φ−1
tn (x) → x. For any ε ∈ (0, ε′) consider

δ > 0 from Lemma 7.2.20. Let S ⊂ Bδ(x) be a compact local cross section of time τ̃ , x ∈ S,
and consider the �ow box U = φ[−τ̃ ,τ̃ ](S). Consider r > 0 such that

φ[−τ̃/2,τ̃/2]Br(x) ⊂ U. (7.16)

For σ = r/2 in Lemma 7.2.20 take the corresponding T > 0. Let N > 0 be such that

dist(φ−1
tN
x, x) < r/2 and tN > T . By Lemma 7.2.20, for all y ∈ S (S ⊂ Bδ(x)) there is

g ∈ H2
ε(x, y) such that:

dist(φ−1
g(t)(x, y)) < σ = r/2

if ‖g(t)‖ ≥ T . If g = (hx, hy) there is s ≥ 0 such that hx(s) = tN . Then ‖g(s)‖ ≥ T and

φ−1
hy(s)y ∈ Br(x) ⊂ U . Consider π : U → S the projection on the �ow box. Let f : S → S be

de�ned by

f(y) = π(φ−1
h2(s)y)

if s ≥ 0 and g = (h1, h2) ∈ H2
ε(x, y) satisfy:
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1. h1(s) = tN and

2. φ−1
h2(s)y ∈ Br(x).

We have shown that for all y ∈ S there are s and g satisfying this conditions.

In this paragraph we will show that f is well de�ned, i.e. it does not depend on g and s.

Consider s, s′ ≥ 0 and g = (h1, h2), g′ = (h′1, h
′
2) ∈ H2

ε(x, y) satisfying both items above. Recall

that ε′ > ε and consider two increasing reparameterizations ĥ1 and ĥ′1 such that

• dist(φ−1

ĥ1(t)
x, φ−1

h2(t)y) < ε′ for all t ≥ 0,

• dist(φ−1

ĥ′1(t)
x, φ−1

h′2(t)y) < ε′ for all t ≥ 0 and

• ĥ1(s) = tN = ĥ′1(s′).

So, if we de�ne (h̃, h̃′) = (h2 ◦ ĥ−1
1 , h′2 ◦ ĥ′−1

1 ) we have that

• dist(φ−1
t x, φ−1

h̃(t)
y) < ε′ for all t ≥ 0,

• dist(φ−1
t x, φ−1

h̃′(t)
y) < ε′ for all t ≥ 0,

• h2(s) = h̃(tN) and h′2(s′) = h̃′(tN).

and by the triangular inequality

dist(φ−1

h̃(t)
y, φ−1

h̃′(t)
y) < 2ε′

for all t ≥ 0. Then by condition (7.15) we have that

|h2(s)− h′2(s)| = |h̃(tN)− h̃′(tN)| < τ̃/2.

This inequality joint with Eq. (7.16) and the fact that φ−1
h2(s)y, φ

−1
h′2(s′)y ∈ Br(x) implies that the

points φ−1
h2(s)y and φ−1

h′2(s′)y are in the same orbit segment contained in the �ow box U . So, they

have the same projection in the local cross section S and f is well de�ned.

Now we will show that f is continuous. Given y ∈ S consider s ≥ 0 and g = (h1, h2) ∈
H2
ε(x, y) satisfying the de�nition of f(y). Consider ρ > 0 such that for all y′ ∈ Bρ(y) ∩ S we

have that φ−1
h2(s)y

′ ∈ Br(x). Then the continuity of f follows by the continuity of the �ow φ and

the continuity of the projection π.

Now one can restrict f to the compact invariant set

K = ∩n≥0f
n(S)

and notice that f is a negative expansive homeomorphisms onK because φ is positive expansive

in φR(K). We conclude that K is �nite and f has periodic points. So φ has periodic orbits.

Theorem 7.2.22. If φ is a positive expansive �ow without singular points then X is the union

of a �nite number of periodic orbits.

Proof. First we show that every orbit is periodic. By contradiction assume that there is a point

x whose orbit is not compact. By Lemma 7.2.21 there is a periodic orbit contained in ω(x). But

it contradicts Lemma 7.2.20. Again by Lemma 7.2.20 there is just a �nite number of periodic

orbits and the proof ends.
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7.2.5 Positive expansive singular �ows

Now we consider positive expansive �ows with singular points. A change in the de�nition is

needed because singularities are isolated points of the space if the �ow is expansive according

to De�nition 7.2.8 (even if one considers expansiveness instead of positive expansiveness). So,

for singular �ows we consider the following de�nition.

De�nition 7.2.23. A continuous �ow φ in a compact metric space X is positive expansive if

for all ε > 0 there is δ > 0 such that if dist(φh(t)x, φty) < δ for all t ≥ 0, with x, y ∈ X and

h ∈ H+, then x and y are in an orbit segment of diameter smaller than ε.

This is the positive adaptation of the de�nition given in [5] for expansive �ows with singular

points. De�nitions 7.2.8 and 7.2.23 coincide if the �ow has no singular points.

Theorem 7.2.24. If φ is a positive expansive �ow with singular points then X is the union of

�nite periodic orbits and singularities.

Proof. Let ε > 0 be an expansive constant. We will show that singularities are stable for φ−1.

By contradiction assume there are xn → p, xn 6= p, p a singular point, and for all n ∈ N there

is tn ≥ 0 such that dist(φ−1
tn xn, p) = ε. If yn = φ−1

tn xn converges to q, then q 6= p and φtq → p as

t→∞. So, p and q contradict the positive expansiveness of the �ow. Therefore there is δ > 0

such that if dist(x, p) < δ then φ−1
t x ∈ Bε(p) for all t ≥ 0.

We will show that Bδ(p) = {p}. By contradiction suppose that dist(x, p) ∈ (0, δ) for some

x. By hypothesis there is t > 0 such that φtx /∈ Bε(p). So x is not periodic. By the stability of

singularities there is no singular point in ω(x). Then ω(x) is positive expansive, connected and

free of singularities. By Theorem 7.2.22 it is a periodic orbit. But this contradicts the stability

of periodic orbits, i.e. Lemma 7.2.19. So, singular points are isolated points of X and the proof

is reduced to Theorem 7.2.22.



Chapter 8

Robust expansiveness

In this section we study the persistence of expansiveness under perturbations of the velocity

�eld in the C1-topology. On surfaces there are no robust geometric expansive �ows because

small C1-perturbations gives rise to periodic orbits (see [103]) and this is an obstruction to

geometric expansiveness (see [5]). As a corollary we have that there are no robust geometric

expansive �ows on three dimensional manifolds with non-empty boundary.

On surfaces we will consider robust kinematic expansiveness in the conservative framework.

On manifolds of dimension greater than two we will prove that robust kinematic expansiveness

is equivalent with geometric expansiveness.

8.1 Positive expansiveness in the annulus

Let A ⊂ R2 be the annulus bounded by two simple closed C1 curves as in Figure 8.1. Denote

by X1
µ(A) the vector space of C1 vector �elds X de�ned in A such that

1. div(X) = 0 and

2. X is parallel to ∂A in ∂A.

X

A

Figure 8.1: A vector �eld in the annulus tangent to the boundary.
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De�nition 8.1.1. We say that X ∈ X1
µ(A) is robustly positive kinematic expansive if there is

a C1-neighborhood of X in X1
µ(A) such that every vector �eld in this neighborhood gives rise

to a positive kinematic expansive �ow.

If X = (a, b) denote X⊥ = (−b, a).

Theorem 8.1.2. Let X ∈ X1
µ(A) be a non-vanishing vector �eld and de�ne Z = X⊥/‖X‖2. If

div(Z) 6= 0 (8.1)

on every point of A then X is robustly positive kinematic expansive.

Proof. Let us �rst recall that if div(X) = 0 then there are no wandering points and since X

has no singularities, we have that every orbit is periodic because no other kind of recurrence is

possible in the annulus in our hypothesis. It implies that the �ow is a suspension of the identity

in a global cross section. Then, in order to prove kinematic expansiveness it is enough to prove

that di�erent periodic orbits have di�erent periods.

Let γ be a periodic orbit of X. The period of γ, denoted by T (γ), can be calculated as

follows:

T (γ) =

∫
γ

1

‖X‖
dγ =

∫
γ

Z · n dγ,

where n is the normal vector of γ in the direction of Z. That is, the period of γ is the �ow of Z

through γ. Now consider two periodic orbits γ1 and γ2 bounding a region R as in Figure 8.2.

γ
1 γ

2

R

Figure 8.2: Region R bounded by two periodic orbits.

Applying Green's Theorem we have that∫
γ2

Z · n dγ2 −
∫
γ1

Z · n dγ1 =

∫∫
R

div(Z) dx dy.

And then

T (γ2)− T (γ1) =

∫∫
R

div(Z) dx dy 6= 0.

Then we have proved that di�erent periodic orbits have di�erent periods and then X is kine-

matic expansive. It only rests to notice that condition (8.1) cannot be lost by a C1 small

perturbation of X.
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Example 8.1.3. Given r1 > 0 and r2 > r1 consider the annulus A ⊂ R2 given by r2
1 ≤ x2+y2 ≤

r2
2. Given a smooth non-vanishing function f : R → R de�ne Xf (x, y) = f(r2)(y,−x), where

r2 = x2 + y2. In this case

Z =
1

r2f(r2)
(x, y)

and

div(Z) = −2f ′

f 2
.

Therefore, Xf is robust kinematic expansive in A if f ′ 6= 0 in [r1, r2].

8.2 Robust expansiveness on manifolds

Let X be a C1 vector �eld of a closed manifold M of dimension n ≥ 3. Assume that M is

endowed with a smooth structure and a smooth Riemannian metric. In this section we also

assume that X has no singularities.

De�nition 8.2.1. We say that X is C1-robust kinematic (or geometric) expansive if every

vector �eld in a suitable C1-neighborhood of X is kinematic (or geometric) expansive.

Theorem 8.2.2. Every C1-robust kinematic expansive vector �eld without singularities on a

closed smooth manifold is geometric expansive.

Proof. Consider X a C1-robust kinematic expansive vector �eld. Let us start proving that

periodic orbits of X are hyperbolic. Now, with standard perturbation techniques (as, for

example, in the proof of Proposition 1 of [88]), it can be proved that if a periodic orbit is

not hyperbolic then there is a C1-close vector �eld Y with an invariant annulus A �lled with

periodic orbits of Y . This gives a contradiction with geometric expansiveness, but in our case

we have to give more arguments. Consider a new perturbation Z such that A is Z-invariant

but with at least one non-periodic orbit. This easily contradicts Proposition 6.3.8.

Therefore, we have proved that every periodic orbit of every vector �eld in a suitable neigh-

borhood of X is hyperbolic. A vector �eld with this property is usually called as star �ow. In

[36] it is proved (see Theorem A) that non-singular star �ows satisfy Axiom A, i.e., periodic

orbits are dense in Ω(X) and Ω(X) is hyperbolic.

Now we prove the quasi-transversality condition, that is:

TxW
s(x) ∩ TxW u(x) = {0x} (8.2)

for all x ∈ M , where W s(x) is the stable manifold and W u(x) is the unstable manifold of

x de�ned as usual. For x ∈ Ω(X) the quasi-transversality condition holds because Ω(X) is

hyperbolic. Consider x /∈ Ω(X) and, arguing by contradiction, assume that (8.2) does not
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hold. With a C1-perturbation Y of X we can also assume that x is in the stable set of a

periodic orbit γ1 and also in the unstable set of a periodic orbit γ2. With another perturbation

Z we can suppose that the intersection of the stable manifold of γ1 with the unstable manifold

of γ2 and a local cross section through x contains an arc l containing x. Now, applying the

Invariant Manifold Theorem for hyperbolic periodic orbits, it is easy to see that for all δ > 0

there is a sub-arc j ⊂ l such that diam(φt(j)) < δ for all t ∈ R. Here φ denotes the �ow of the

vector �eld Z. This contradicts kinematic expansiveness.

Since X satis�es Axiom A and the quasi-transversality condition, we can apply the results

of [88] to conclude that X is in fact robust geometric expansive.



Appendix A

Quasi-metric interpolation

In this section we follow [35]. A quasi-metric is a map ρ : X ×X → R such that

1. ρ(x, y) ≥ 0 and ρ(x, y) = 0 if and only if x = y,

2. ρ(x, y) = ρ(y, x) and

3. ρ(x, y) ≤ 2 max{ρ(x, z), ρ(z, y)} (generalized triangle property)

for all x, y, z ∈ X.

A quasi-metric induces a topology in X as a metric does. Given a, b ∈ X de�ne

D(a, b) = inf{ρ(a, x1) + ρ(x1, x2) + ρ(x2, x3) + · · ·+ ρ(xn−1, xn) + ρ(xn, b)} (A.1)

with x1, x2, . . . , xn ∈ X and n ∈ N. It is called the interpolation of the quasi-metric. We will

show that D is a metric de�ning the same topology as ρ. Notice that the triangle inequality

for D is trivial. To continue we need the following result.

Lemma A.0.3. If ρ is a quasi-metric and a, x1, x2, . . . , xn, b ∈ X then the following inequality

holds

ρ(a, b) ≤ 2ρ(a, x1) + 4ρ(x1, x2) + 4ρ(x2, x3) + · · ·+ 4ρ(xn−1, xn) + 2ρ(xn, b). (A.2)

Proof. By contradiction assume the Lemma is false. Then there is some value of n for which

(A.2) does not hold. Let N be the smallest such integer. Then

ρ(a, b) > 2ρ(a, x1) + 4ρ(x1, x2) + 4ρ(x2, x3) + · · ·+ 4ρ(xN−1, xN) + 2ρ(xN , b). (A.3)

while (A.2) holds for n < N . Notice that N > 1 because (A.2) holds for n = 1 by the

generalized triangle property. The same property implies that for every xr either

ρ(a, b) ≤ 2ρ(a, xr), (A.4)

or

ρ(a, b) ≤ 2ρ(xr, b), (A.5)
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If r = 1, (A.4) does not hold because of (A.3), hence (A.5) does. Likewise (A.5) does not hold

for r = N . Let R be the largest value of r for which (A.5) holds. Then R < N , and

ρ(a, b) ≤ 2ρ(xR, b). (A.6)

From the de�nition of R,

ρ(a, b) ≤ 2ρ(a, xR+1). (A.7)

Since (A.2) holds for n < N ,

ρ(xR, b) ≤ 2ρ(xR, xR+1) + 4ρ(xR+1, xR+2) + · · ·+ 4ρ(xN−1, xN) + 2ρ(xN , b), (A.8)

and

ρ(a, xR+1) ≤ 2ρ(a, x1) + 4ρ(x1, x2) + · · ·+ 4ρ(xR−1, xR) + 2ρ(xR, xR+1), (A.9)

Adding (A.8) and (A.9) and combining with (A.6) and (A.7) gives

ρ(a, b) ≤ 2ρ(a, x1) + 4ρ(x1, x2) + 4ρ(x2, x3) + · · ·+ 4ρ(xN−1, xN) + 2ρ(xN , b)

which contradicts (A.3).

Proposition A.0.4 (Frink [35]). The function D is a metric on X such that

D(x, y) ≤ ρ(x, y) ≤ 4D(x, y). (A.10)

Moreover, the topology of D is the one induced by ρ.

Proof. The �rst inequality (A.10) follows by de�nition. The second one is a consequence of

(A.2). To prove that D is a metric use (A.10). The triangle inequality for D is trivial.
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asymptotically stable, 24

isolated, 82, 84

singular, 77

stable, 116

repeller, 15

set
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